forked from jasonxyliu/Lang2LTL-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_ablate.py
233 lines (200 loc) · 10.9 KB
/
dataset_ablate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import argparse
import logging
from collections import defaultdict
import itertools
import random
import re
from utils import load_from_file, save_to_file
def split_true_lmk_grounds(loc, lmks_fpath, obj_fpath, sp_fpath, res_fpath):
"""
Split ``true_lmk_grounds.json`` into two files contains referring expressions per landmark
and grounded spatial predications per spatial relation for each location.
"""
lmk_grounds = load_from_file(lmks_fpath)[loc]
obj_ids = [obj_id for obj_id in load_from_file(obj_fpath).keys() if obj_id != "waypoint_0"] # landmarks described by image
lmk_ids = [lmk_id for lmk_id in lmk_grounds.keys() if lmk_id not in obj_ids] # landmarks described by text
sp_grounds = {"text": defaultdict(list), "image": defaultdict(list), "both": defaultdict(list)}
res = defaultdict(lambda: defaultdict(list))
for lmk, grounds in lmk_grounds.items():
for ground in grounds:
if "*" in ground: # unique referring expression can identify landmark without anchor
modality = "text" if lmk in lmk_ids else "image"
res[lmk]["proper_names"].append(ground["*"])
if lmk not in sp_grounds[modality]["None"]:
sp_grounds[modality]["None"].append(lmk)
elif "@" in ground: # ambiguous referring expression if used without anchor
res[lmk]["generic_names"].append(ground["@"])
else: # referring expression grounding
rel = list(ground.keys())[0]
if len(ground[rel]) == 2:
if ground[rel][0][0] in lmk_ids:
if ground[rel][1][0] in lmk_ids:
modality = "text"
else:
modality = "both"
else:
if ground[rel][1][0] in lmk_ids:
modality = "both"
else:
modality = "image"
elif len(ground[rel]) == 3:
if ground[rel][0][0] in lmk_ids:
if ground[rel][1][0] in lmk_ids:
if ground[rel][2][0] in lmk_ids:
modality = "text"
else:
modality = "both"
else:
modality = "both"
else:
if ground[rel][1][0] in lmk_ids:
modality = "both"
else:
if ground[rel][2][0] in lmk_ids:
modality = "image"
else:
modality = "both"
else:
raise IndexError(f"Incorrect number of RE grounds (must be 2 or 3): {ground[rel]}")
if ground[rel] not in sp_grounds[modality][rel]:
sp_grounds[modality][rel].append(ground[rel])
save_to_file(sp_grounds, sp_fpath)
save_to_file(res, res_fpath)
def construct_dataset(ltl_fpath, sp_fpath, res_fpath, utts_fpath, outs_fpath, nsamples, seed):
"""
Generate input utterances and ground truth results for each grounding module.
"""
random.seed(seed)
lifted_data = load_from_file(ltl_fpath)
sp_grounds_all = load_from_file(sp_fpath)
res_all = load_from_file(res_fpath)
ltl2data = defaultdict(set)
utts = []
for pattern_type, props, utt_lifted, ltl_lifted in lifted_data:
if utt_lifted not in utts:
ltl2data[ltl_lifted].add((pattern_type, props, utt_lifted))
ltl2data = sorted(ltl2data.items(), key=lambda kv: len(kv[0]))
logging.info(f"# unique lifted LTL formulas: {len(ltl2data)}")
nutts = 0
for ltl, data in ltl2data:
nutts += len(data)
logging.info(f"{ltl}: {len(data)}")
logging.info(f"# unique utterances: {nutts}")
modality2ngrounds = {modality: len(grounds) for modality, grounds in sp_grounds_all.items()}
logging.info(f"# unique spatial relations: {modality2ngrounds}")
logging.info(f"# unique landmarks: {len(res_all)}")
utts = ""
true_outs = []
for ltl_lifted, ltl_data in ltl2data: # every lifted LTL formula
data_sampled = random.sample(sorted(ltl_data), nsamples) if nsamples else sorted(ltl_data)
ratio = len(data_sampled) // 3 # text only, image only, both modality
for data in data_sampled[: ratio]:
modality = "text"
utts = construct_utt(modality, data, sp_grounds_all[modality], res_all, utts, true_outs, ltl_lifted)
for data in data_sampled[ratio: ratio + ratio]:
modality = "image"
utts = construct_utt(modality, data, sp_grounds_all[modality], res_all, utts, true_outs, ltl_lifted)
for data in data_sampled[ratio + ratio:]:
modality = "both"
utts = construct_utt(modality, data, sp_grounds_all[modality], res_all, utts, true_outs, ltl_lifted)
save_to_file(utts, utts_fpath)
save_to_file(true_outs, outs_fpath)
logging.info(f"# data points: {len(true_outs)}")
def construct_utt(modality, data, sp_grounds_all, res_all, utts, true_outs, ltl_lifted):
pattern_type, props_full_str, utt_lifted = data
props_full = eval(props_full_str)
props = [props_full[0]] if len(set(props_full)) == 1 else props_full # e.g., visit a at most twice, ['a', 'a']
rels = random.sample(sorted(sp_grounds_all), len(props))
sre_to_preds = {}
grounded_sre_to_preds = defaultdict(dict)
grounded_sps = defaultdict(list)
for rel in rels: # every sampled spatial relations
sp_grounds_sampled = random.sample(sp_grounds_all[rel], 1)[0]
res_true = []
if rel == "None": # referring expression without spatial relation
sre = random.sample(res_all[sp_grounds_sampled]["proper_names"], 1)[0]
res_true.append(sre)
sp_true = {"target": sp_grounds_sampled}
elif len(sp_grounds_sampled) == 1: # sre with only an anchor
while "proper_names" not in res_all[sp_grounds_sampled[0]]:
sp_grounds_sampled = random.sample(sp_grounds_all[rel], 1)[0]
re_tar = random.sample(res_all[sp_grounds_sampled[0]]["proper_names"], 1)[0]
res_true.append(re_tar)
sre = f"{rel} {re_tar}"
sp_true = {"anchor": [sp_grounds_sampled[0]]}
else: # for sre with target and one or two anchors, both proper and generic names are valid
while "proper_names" not in res_all[sp_grounds_sampled[1][0]] \
or (len(sp_grounds_sampled) == 3 and "proper_names" not in res_all[sp_grounds_sampled[2][0]]):
# print(f"RESAMPLE: {sp_grounds_sampled}")
sp_grounds_sampled = random.sample(sp_grounds_all[rel], 1)[0]
res_tar = list(itertools.chain.from_iterable(res_all[sp_grounds_sampled[0][0]].values()))
re_tar = random.sample(res_tar, 1)[0] # target referring expression
res_true.append(re_tar)
re_anc1 = random.sample(res_all[sp_grounds_sampled[1][0]]["proper_names"], 1)[0] # anchor 1 referring expression
res_true.append(re_anc1)
if len(sp_grounds_sampled) == 2:
sre = f"{re_tar} {rel} {re_anc1}"
sp_true = {"target": sp_grounds_sampled[0][0], "anchor": [sp_grounds_sampled[1][0]]}
else:
re_anc2 = random.sample(res_all[sp_grounds_sampled[2][0]]["proper_names"], 1)[0] # anchor 2 referring expression
res_true.append(re_anc2)
sre = f"{re_tar} {rel} {re_anc1} and {re_anc2}"
sp_true = {"target": sp_grounds_sampled[0][0], "anchor": [sp_grounds_sampled[1][0], sp_grounds_sampled[2][0]]}
sre_to_preds[sre] = {rel: res_true}
if rel == "None":
grounded_sre_to_preds[sre][rel] = [[[1.0, sp_grounds_sampled]]]
else:
grounded_sre_to_preds[sre][rel] = [[score_ground] for score_ground in [[1.0, sp_ground[0]] for sp_ground in sp_grounds_sampled]]
grounded_sps[sre].append(sp_true)
if not utt_lifted.startswith('.'):
utt_ground = '.' + utt_lifted
if not utt_ground.endswith('.'):
utt_ground += '.'
for prop, sre in zip(props, sre_to_preds.keys()):
utt_ground = re.sub(rf"(\b)([{prop}])(\W)", rf'\1{sre}\3', utt_ground)
utt_ground = utt_ground[1:-1]
utts += f"{utt_ground}\n"
true_outs.append({
"pattern_type": pattern_type,
"modality": modality,
"utt": utt_ground.strip(),
"lifted_utt": utt_lifted,
"props": props_full,
"sre_to_preds": sre_to_preds,
"grounded_sre_to_preds": grounded_sre_to_preds,
"grounded_sps": grounded_sps,
"lifted_ltl": ltl_lifted
})
return utts
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--loc", type=str, default="providence", choices=["providence", "auckland", "boston", "san_francisco"], help="domain name.")
parser.add_argument("--nsamples", type=int, default=None, help="number of sample utts per LTL formula or None for all.")
parser.add_argument("--seed", type=int, default=0, help="seed to random sampler.") # 0, 1, 2, 42, 111
args = parser.parse_args()
loc_id = f"{args.loc}_n{args.nsamples}_seed{args.seed}" if args.nsamples else f"{args.loc}_all_seed{args.seed}"
data_dpath = os.path.join(os.path.expanduser("~"), "ground", "data")
obj_fpath = os.path.join(data_dpath, "maps", f"{args.loc}_ablate", "obj_locs.json")
osm_fpath = os.path.join(data_dpath, "osm_ablate", f"{args.loc}.json")
dataset_dpath = os.path.join(os.path.expanduser("~"), "ground", "data", "dataset")
loc_dpath = os.path.join(dataset_dpath, f"{args.loc}_ablate")
os.makedirs(loc_dpath, exist_ok=True)
ltl_fpath = os.path.join(dataset_dpath, "ltl_samples_sorted.csv")
sp_fpath = os.path.join(loc_dpath, f"{args.loc}_sp_grounds.json")
res_fpath = os.path.join(loc_dpath, f"{args.loc}_res.json")
utts_fpath = os.path.join(loc_dpath, f"{loc_id}_utts.txt")
outs_fpath = os.path.join(loc_dpath, f"{loc_id}_true_results.json")
logging.basicConfig(level=logging.INFO,
format='%(message)s',
handlers=[
logging.FileHandler(os.path.join(loc_dpath, f"{args.loc}_synthetic_dataset.log"), mode='w'),
logging.StreamHandler()
]
)
logging.info(f"Generating dataset location: {args.loc}\n***** Dataset Statisitcs\n")
if not os.path.isfile(sp_fpath) or not os.path.isfile(res_fpath):
lmks_fpath = os.path.join(dataset_dpath, f"true_lmk_grounds_ablate.json")
split_true_lmk_grounds(args.loc, lmks_fpath, obj_fpath, sp_fpath, res_fpath)
if not os.path.isfile(utts_fpath) or not os.path.isfile(outs_fpath):
construct_dataset(ltl_fpath, sp_fpath, res_fpath, utts_fpath, outs_fpath, args.nsamples, args.seed)