Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

question31_40文件夹中readme中出错 #27

Open
beiluo97 opened this issue Apr 29, 2020 · 1 comment
Open

question31_40文件夹中readme中出错 #27

beiluo97 opened this issue Apr 29, 2020 · 1 comment

Comments

@beiluo97
Copy link

  1. 使用仿射变换,输出(1)那样的$x$轴倾斜$30$度的图像( $d_x=30$),这种变换被称为X-sharing。
  2. 使用仿射变换,输出(2)那样的y轴倾斜$30$度的图像( $d_y=30$),这种变换被称为Y-sharing。
  3. 使用仿射变换,输出(3)那样的$x$轴、$y$轴都倾斜$30$度的图像($d_x = 30$,$d_y = 30$)。

以及底下的两个公式,t_x,t_y都应该替换为d_x和d_y

@beiluo97
Copy link
Author

问题32缺少的公式

$$
I(x,y)=\frac{1}{H\  W}\ abs\bigg \{\sum\limits_{l=0}^{H-1}\ \sum\limits_{k=0}^{W-1}\ G(l,k)\ \Big [ \cos{2\pi j\ (\frac{k\  x}{W}+\frac{l\  y}{H})} +j\sin{2\pi j\ (\frac{k\  x}{W}+\frac{l\  y}{H})}\Big ] \bigg \}
$$

以及问题32中二维傅立叶变换的表述...
首先第一个公式就错了$$ G(k,l)=\frac{1}{H\ W}\ \sum\limits_{y=0}^{H-1}\ \sum\limits_{x=0}^{W-1}\ I(x,y)\ e^{-2\ \pi\ j\ (\frac{k\ x}{W}+\frac{l\ y}{H})} $$
推一遍傅立叶公式再拓展到二维傅立叶的正变换,就知道不需要在正变换中乘以\frac{1}{H\ W}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant