Algebraic Equations with SymPy\n\nIntroduction | Output Formatting\n| Installation |\nTry Live | Issues or Comments |\nChange Log |\nLicense\n| GIT Repository\n| PyPi Link
\n\n\n\nIntroduction
\n\n
\n\nThis tool defines relations that all high school and college students would\nrecognize as mathematical equations. \nThey consist of a left hand side (lhs) and a right hand side (rhs) connected by\nthe relation operator \"=\". In addition, it sets some convenient defaults and \nprovides some controls of output formatting that may be useful even if\nyou do not use the Equation
class (see Conveniences for\nSymPy).
\n\nThis tool applies operations to both sides of the equation simultaneously, just\nas students are taught to do when \nattempting to isolate (solve for) a variable. Thus the statement Equation/b
\nyields a new equation Equation.lhs/b = Equation.rhs/b
\n\nThe intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra\nin a stepwise fashion using as close to standard mathematical notation as \npossible. In this way more people can successfully perform \nalgebraic rearrangements without stumbling\nover missed details such as a negative sign.
\n\nA simple example as it would appear in a Jupyter \nnotebook is shown immediately below:
\n\n\n\nThe last cell illustrates how it is possible to substitute numbers with \nunits into the solved equation to calculate a numerical solution with \nproper units. The units(...)
operation is part this package, not Sympy.
\n\nIn IPython environments (IPython, Jupyter, Google Colab, etc...) there is \nalso a shorthand syntax for entering equations provided through the IPython \npreparser. An equation can be specified as eq1 =@ a/b = c/d
.
\n\n\n\nIf no Python name is \nspecified for the equation (no eq_name
to the left of =@
), the equation \nwill still be defined, but will not be easily accessible for further \ncomputation. The =@
symbol combination was chosen to avoid conflicts with \nreserved python symbols while minimizing impacts on syntax highlighting \nand autoformatting.
\n\nMore examples of the capabilities of Algebra with Sympy are \nhere.
\n\nMany math packages such as SageMath \nand Maxima have similar capabilities, \nbut require more knowledge of command syntax, plus they cannot easily be \ninstalled in a generic python environment.
\n\n\n\nEven if you do not use the Equation
class, there are some convenience \ntools and defaults that will probably make interactive use of SymPy in \nJupyter/IPython environments easier:
\n\n\n- By default, all numbers in Sympy expressions without decimal points are \ninterpreted as integers (e.g.
2/3*x
, where x is a sympy symbol, -> \n2*x/3
not x*0.6666...
, but if x is just a plain Python object then 2/3*x
\n-> x*0.66666...
). This can be turned off with unset_integers_as_exact()
, \nwhich leads to standard Python behavior (2/3*x
-> x*0.6666...
) even for \nSympy expressions. Turn on with set_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
. \n- Results of
solve()
are wrapped in FiniteSet()
to force pretty-printing \nof all of a solution set. See Controlling the Format of Interactive \nOutputs. \n- It is possible to set the default display to show both the pretty-printed \nresult and the code version simultaneously. See Controlling the Format of Interactive \nOutputs.
\n
\n\n\n\n
\n\n\n- These controls impact all Sympy objects and the
Equation
class. \n- In graphical environments (Jupyter) you will get rendered Latex such as \n$\\frac{a}{b} = \\frac{c}{d}$ or $e^{\\frac{-x^2}{\\sigma^2}}$. To also see the \ncode representation (what can be copied and pasted for \nadditional computation) set
algwsym_config.output.show_code = True
. \nThis will print the code version (e.g. Equation(a,b/c)
) of equations \nand sympy expression in addition to the human readable version. This code \nversion can be accessed directly by calling repr()
on the \nequation or expression. \n
\n\n\nIn interactive text environments (IPython and command line) The human \nreadable string version of Sympy expressions are returned (for Equations
a \n= b rather than Equation(a,b)). This is equivalent to Calling print()
\nor str()
on an expression.
\n\n\n- To have the code version (can be copied and pasted as a \nPython statement) returned, set
algwsym_config.output.human_text = False
. \n- Setting both
algwsym_config.output.human_text = True
\nand algwsym_config.output.show_code = True
, will return both the \ncode and human readable versions. \n
\nThe equation label can be turned off by setting\nalgwsym_config.output.label = False
.
\nAutomatic wrapping of Equations
as Latex equations can be activated \nby setting algwsym_config.output.latex_as_equations
to True
. The \ndefault is False
. Setting this to True
wraps output as LaTex equations,\nwrapping them in \\begin{equation}...\\end{equation}
. Equations formatted \nthis way will not be labeled with the internal name for the equation, \nindependent of the setting of algwsym_config.output.label
.
\nBy default solutions output by solve()
are returned as a SymPy \nFiniteSet()
to force typesetting of the included solutions. To get Python \nlists instead you can override this for the whole session by setting\nalgwsym_config.output.solve_to_list = True
. For a one-off, simply \nwrap the output of a solve in list()
(e.g. list(solve(...))
). One \nadvantage of list mode is that lists can be ordered. When\nalgwsym_config.output.solve_to_list = True
solve()
maintains the \nsolutions in the order the solve for variables were input.
\n
\n\nSetup/Installation
\n\n
\n\n\n- Use pip to install in your python environment: \n
pip install -U Algebra-with-SymPy
\n- To use in a running python session issue\nthe following command :
from algebra_with_sympy import *
. \nThis will also import the SymPy tools. \n- If you want to isolate this tool from the global namespace you are \nworking with change the import statement \nto
import algebra_with_sympy as spa
, where \nspa
stands for \"SymPy Algebra\". Then all calls would be made to \nspa.funcname()
. WARNING: Doing this makes shorthand equation input and \ncontrol of interactive output formats unavailable. To recover this \nfunctionality the following code must be run in the interactive session. \n
\n\nEquation = spa.Equation\nEqn = Equation\nalgwsym_config = spa.algwsym_config\n
\n\nTry in binder
\n\n\n
\n\n\n\n
\n\n\n\nChange Log
\n\n
\n\n\n- 1.1.0 (July 21, 2024)\n
\n- Setting integers as exact (
set_integers_as_exact()
, the default) now \nonly sets integers as exact within Sympy and Algebra_with_Sympy \nexpressions. This increases compatibility with other packages that \ndepend on integers being Python integers. \n- Refuse to import Algebra_with_Sympy if an incompatible \nversion of Sympy is installed in the environment.
\n- Added warning explaining how to install a compatible version of Sympy.
\n
\n- 1.0.2 (July 5, 2024)\n
\n- Removed requirements for Jupyter and Jupyterlab as code will work in \nvanilla python or Google Colab.
\n- Workaround for Google Colab's inconsistent handling of mixed Latex and \nplain text strings. This impacted display of equation labels in Colab.
\n- BUG FIX: catch IPython not installed so that can run in plain vanilla \npython.
\n
\n- 1.0.1 (May 22, 2024)\n
\n- BUG FIX: equation labels that include underscore characters \"_\" are now \naccepted.
\n- BUG FIX: wrapping equations formatted as LaTex equation (ie. surrounded \nby
\\begin{equation}...\\end{equation}
) in the $..$
code used to \nindicate markdown for MathJax was causing output errors in Quarto when \noutputing to .tex or .pdf. This is now fixed without negatively \nimpacting MathJax rendering. \n- BUG FIX: Singleton results of solve unnecessarily wrapped by extra list \nor finiteset. No longer double nested.
\n- BUG FIX: When returning lists make solve respect user order of solutions.
\n- BUG FIX: Equation output threw error when Algebra_with_Sympy was \nimported as a submodule. Equation labeling turned off for this type of \nimport to avoid error.
\n- BUG FIX: Equation labels are now copyable even with the newer MathJax \ncommonHTML rendering.
\n- Updates to requirements.txt.
\n- Documentation updates.
\n
\n- 1.0.0 (January 2, 2024)\n
\n- Added convenience operation
units(...)
which takes a string of space \nseparated symbols to use as units. This simply declares the symbols \nto be positive, making them behave as units. This does not create units \nthat know about conversions, prefixes or systems of units. This lack \nis on purpose to provide units that require the user to worry about \nconversions (ideal in a teaching situation). To get units with built-in \nconversions see sympy.physics.units
. \n- Fixed issue #23 where
cos()
multiplied by a factor was not the same \ntype of object after simplify()
acted on an expression. Required \nembedding the Equation
type in the sympy library. Until Equation
is \nincorporated into the primary Sympy repository a customized version of \nthe latest stable release will be used. \n- Fixed issue where trailing comments (ie.
# a comment
at the end of a \nline) lead to input errors using compact =@
notation. \nalgwsym_config.output.latex_as_equations
has a default value of False
.\n Setting this to True
wraps output as LaTex equations wrapping them \nin \\begin{equation}...\\end{equation}
. Equations formatted this way \nwill not be labeled with the internal name for the equation. \n
\n- 0.12.0 (July 12, 2023)\n
\n- Now defaults to interpreting numbers without decimal points as integers. \nThis can be turned off with
unset_integers_as_exact()
and on with\nset_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
. \n
\n- 0.11.0 (June 5, 2023)\n
\n- Formatting of
FiniteSets
overridden so that the contents always\npretty-print. This removes the necessity of special flags to get \npretty output from solve
. \n- Sympy
solve()
now works reliably with equations and outputs \npretty-printed solutions. \n- Added option
algwsym_config.output.solve_to_list = True
which causes \nsolve()
to return solutions sets as Python lists. Using this option \nprevents pretty-printing of the solutions produced by solve()
. \nalgwsym_config.output.show_code
and \nalgwsym_config.output.human_text
now work for all sympy objects, not \njust Equation
objects. This works\nin terminal, IPython terminal and Jupyter. This is achieved by hooking \ninto the python display_hook
and IPython display_formatter
. \n- Added jupyter to requirements.txt so that virtual environment builds\nwill include jupyter.
\n- The way
__version__
was handled could break pip install. Changed to\ngenerating the internal version during setup. This means the version\nis now available as algwsym_version
. \n
\n- 0.10.0 (Sep. 5, 2022)\n
\n- Documentation updates and fixes.
\n- Significantly increased test coverage (~98%).
\n- Support for
Eqn.rewrite(Add)
\n- Solving (e.g.
solve(Eqn,x)
) now supported fully. Still experimental. \n- Bug fix: latex printing now supports custom printer.
\n- Substitution into an Equation using Equations is now \nsupported (e.g.
eq1.subs(eq2, eq3, ...)
). \nalgebra_with_sympy.__version__
is now available for version checking \nwithin python. \n- Bug fix: preparsing for
=@
syntax no longer blocks obj?
syntax for \ngetting docstrings in ipython. \n- More robust determination of equation names for labeling.
\n
\n- 0.9.4 (Aug. 11, 2022)\n
\n- Update to deal with new Sympy function
piecewise_exclusive
in v1.11. \n- Added user warning if a function does not extend for use with
Equations
\nas expected. This also allows the package to be used even when a function \nextension does fail. \n- Simplification of documentation preparation.
\n- Typo fixes in preparser error messages.
\n
\n- 0.9.3 (Aug. 9, 2022)\n
\n- Added check for new enough version of IPython to use the preparser.
\n- If IPython version too old, issue warning and do not accept
=@
shorthand. \n
\n- 0.9.2 (Jun. 5, 2022)\n
\n=@
shorthand syntax for defining equations in IPython compatible \nenvironments. \n- Fixed bug where
root()
override called sqrt()
on bare expressions. \n
\n- 0.9.1 (Mar. 24, 2022)\n
\n- Equations labeled with their python name, if they have one.
\n- Added flags to adjust human readable output and equation labeling.
\n- Accept equation as function argument in any position.
\n- First pass at
solve()
accepting equations. \n- Added override of
root()
to avoid warning messages. \n- More unit tests.
\n- First pass at documentation.
\n
\n- 0.9.0 functionality equivalent to extension of SymPy in\nPR#21333.
\n
\n\n\n\n\nThis program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.
\n\nCopyright - Algebra with Sympy Contributors 2021, 2022, 2023, 2024
\n\nDevelopment Notes
\n\nGeneral | Make Docs | \nRunning Tests | \nBuild PyPi Package|
\n\nGeneral Notes
\n\n
\n\n\n- TODOs\n
\n- Test collect when there isn't an available _eval_collect (not sure how \nto get there).
\n- Test for _binary_op NotImplemented error (not sure how to get there).
\n
\n- To consider\n
\n- Include Sympy Plot Backends\nin the default setup.
\n- Change
Equation
constructor to accept Equality
, Set
, List
or \nlhs, rhs
, rather than just lhs, rhs
. \n- Extend
.subs
to accept .subs(a=2*c, b = sin(q), ...)
. \n- MathLive on another web page as possible\ninput engine.
\n
\n
\n\nConstructing the Documentation
\n\n
\n\n\n- Make sure pdoc is installed and updated in the virtual environment
pip \ninstall -U pdoc
. \n- Update any
.md
files included in _init_.py
.\n\n- Generally URLs should be absolute, not relative.
\n
\n- At the root level run pdoc \n
\npdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg \n--logo-link https://gutow.github.io/Algebra_with_Sympy/\n--footer-text \"Algebra with Sympy vX.X.X\" --math -html -o docs \n./algebra_with_sympy\n
\nwhere X.X.X
is the version number. \n
\n\nTasks for Documentation
\n\n
\n\n\n- Readme.md & Development Notes.md\n
\n- Use absolute path to github pages for more examples.
\n
\n
\n\nRunning Tests
\n\n
\n\n\n- Install updated pytest in the virtual environment:\n
pipenv shell\npip install -U pytest\n
\n- Run standard tests:\n
pytest --ignore='Developer Testing' --ignore-glob='*test_preparser.py'
. \n- Run preparser tests:\n
ipython -m pytest tests/test_preparser.py
\n- Run doctests:\n
pytest --ignore='tests' --ignore='Developer Testing' \n--ignore-glob='*old*' --doctest-modules
\n
\n\nYou can run all the tests using the dotests script: ./dotests.sh
.
\n\nNOTE: Some warnings about invalid escape characters are expected because \nraw strings are being passed with specialized LaTex escaped characters.
\n\nBuilding PyPi package
\n\n
\n\n\n- Make sure to update the version number in setup.py first.
\n- Install updated setuptools and twine in the virtual environment:\n
pipenv shell\npip install -U setuptools wheel twine\n
\n- Build the distribution
python -m setup sdist bdist_wheel
. \n- Test it on
test.pypi.org
.\n\n- Upload it (you will need an account on test.pypi.org):\n
python -m twine upload --repository testpypi dist/*
. \n- Create a new virtual environment and test install into it:\n
exit # to get out of the current environment\ncd <somewhere>\nmkdir <new virtual environment>\ncd <new directory>\npipenv shell #creates the new environment and enters it.\npip install -i https://test.pypi.org/..... # copy actual link from the\n # repository on test.pypi.\n
\nThere are often install issues because sometimes only older versions of\nsome of the required packages are available on test.pypi.org. If this\nis the only problem change the version to end in rc0
for release\ncandidate and try it on the regular pypi.org as described below for\nreleasing on PyPi. \n- After install test by running a jupyter notebook in the virtual \nenvironment.
\n
\n
\n\nReleasing on PyPi
\n\n\nProceed only if testing of the build is successful.
\n\n\n- Double check the version number in version.py.
\n- Rebuild the release:
python -m setup sdist bdist_wheel
. \n- Upload it:
python -m twine upload dist/*
\n- Make sure it works by installing it in a clean virtual environment. This\nis the same as on test.pypi.org except without
-i https://test.pypy...
. If\nit does not work, pull the release. \n
\n"}, "algebra_with_sympy.proper_sympy": {"fullname": "algebra_with_sympy.proper_sympy", "modulename": "algebra_with_sympy", "qualname": "proper_sympy", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation": {"fullname": "algebra_with_sympy.algebraic_equation", "modulename": "algebra_with_sympy.algebraic_equation", "kind": "module", "doc": "This package uses a special version of sympy which defines an equation \nwith a left-hand-side (lhs) and a right-\nhand-side (rhs) connected by the \"=\" operator (e.g. p*V = n*R*T
).
\n\nThe intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra in a stepwise fashion. In this way more people\ncan successfully perform algebraic rearrangements without stumbling over\nmissed details such as a negative sign. This mimics the capabilities available\nin SageMath and\nMaxima.
\n\nThis package also provides convenient settings for interactive use on the \ncommand line, in ipython and Jupyter notebook environments. See the \ndocumentation at https://gutow.github.io/Algebra_with_Sympy/.
\n\nExplanation
\n\nThis class defines relations that all high school and college students\nwould recognize as mathematical equations. At present only the \"=\" relation\noperator is recognized.
\n\nThis class is intended to allow using the mathematical tools in SymPy to\nrearrange equations and perform algebra in a stepwise fashion. In this\nway more people can successfully perform algebraic rearrangements without\nstumbling over missed details such as a negative sign.
\n\nCreate an equation with the call Equation(lhs,rhs)
, where lhs
and\nrhs
are any valid Sympy expression. Eqn(...)
is a synonym for\nEquation(...)
.
\n\nParameters
\n\nlhs: sympy expression, class Expr
.\nrhs: sympy expression, class Expr
.\nkwargs:
\n\nExamples
\n\nNOTE: All the examples below are in vanilla python. You can get human\nreadable eqautions \"lhs = rhs\" in vanilla python by adjusting the settings\nin algwsym_config
(see it's documentation). Output is human readable by\ndefault in IPython and Jupyter environments.
\n\n\n
>>> from algebra_with_sympy import *\n>>> a, b, c, x = var('a b c x')\n>>> Equation(a,b/c)\nEquation(a, b/c)\n>>> t=Eqn(a,b/c)\n>>> t\nEquation(a, b/c)\n>>> t*c\nEquation(a*c, b)\n>>> c*t\nEquation(a*c, b)\n>>> exp(t)\nEquation(exp(a), exp(b/c))\n>>> exp(log(t))\nEquation(a, b/c)\n
\n
\n\nSimplification and Expansion
\n\n\n
>>> f = Eqn(x**2 - 1, c)\n>>> f\nEquation(x**2 - 1, c)\n>>> f/(x+1)\nEquation((x**2 - 1)/(x + 1), c/(x + 1))\n>>> (f/(x+1)).simplify()\nEquation(x - 1, c/(x + 1))\n>>> simplify(f/(x+1))\nEquation(x - 1, c/(x + 1))\n>>> (f/(x+1)).expand()\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> expand(f/(x+1))\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> factor(f)\nEquation((x - 1)*(x + 1), c)\n>>> f.factor()\nEquation((x - 1)*(x + 1), c)\n>>> f2 = f+a*x**2+b*x +c\n>>> f2\nEquation(a*x**2 + b*x + c + x**2 - 1, a*x**2 + b*x + 2*c)\n>>> collect(f2,x)\nEquation(b*x + c + x**2*(a + 1) - 1, a*x**2 + b*x + 2*c)\n
\n
\n\nApply operation to only one side
\n\n\n
>>> poly = Eqn(a*x**2 + b*x + c*x**2, a*x**3 + b*x**3 + c*x)\n>>> poly.applyrhs(factor,x)\nEquation(a*x**2 + b*x + c*x**2, x*(c + x**2*(a + b)))\n>>> poly.applylhs(factor)\nEquation(x*(a*x + b + c*x), a*x**3 + b*x**3 + c*x)\n>>> poly.applylhs(collect,x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n
\n
\n\n.apply...
also works with user defined python functions
\n\n\n
>>> def addsquare(eqn):\n... return eqn+eqn**2\n...\n>>> t.apply(addsquare)\nEquation(a**2 + a, b**2/c**2 + b/c)\n>>> t.applyrhs(addsquare)\nEquation(a, b**2/c**2 + b/c)\n>>> t.apply(addsquare, side = 'rhs')\nEquation(a, b**2/c**2 + b/c)\n>>> t.applylhs(addsquare)\nEquation(a**2 + a, b/c)\n>>> addsquare(t)\nEquation(a**2 + a, b**2/c**2 + b/c)\n
\n
\n\nInaddition to .apply...
there is also the less general .do
,\n.dolhs
, .dorhs
, which only works for operations defined on the\nExpr
class (e.g..collect(), .factor(), .expand()
, etc...).
\n\n\n
>>> poly.dolhs.collect(x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n>>> poly.dorhs.collect(x)\nEquation(a*x**2 + b*x + c*x**2, c*x + x**3*(a + b))\n>>> poly.do.collect(x)\nEquation(b*x + x**2*(a + c), c*x + x**3*(a + b))\n>>> poly.dorhs.factor()\nEquation(a*x**2 + b*x + c*x**2, x*(a*x**2 + b*x**2 + c))\n
\n
\n\npoly.do.exp()
or other sympy math functions will raise an error.
\n\nRearranging an equation (simple example made complicated as illustration)
\n\n\n
>>> p, V, n, R, T = var('p V n R T')\n>>> eq1=Eqn(p*V,n*R*T)\n>>> eq1\nEquation(V*p, R*T*n)\n>>> eq2 =eq1/V\n>>> eq2\nEquation(p, R*T*n/V)\n>>> eq3 = eq2/R/T\n>>> eq3\nEquation(p/(R*T), n/V)\n>>> eq4 = eq3*R/p\n>>> eq4\nEquation(1/T, R*n/(V*p))\n>>> 1/eq4\nEquation(T, V*p/(R*n))\n>>> eq5 = 1/eq4 - T\n>>> eq5\nEquation(0, -T + V*p/(R*n))\n
\n
\n\nSubstitution (#'s and units)
\n\n\n
>>> L, atm, mol, K = var('L atm mol K', positive=True, real=True) # units\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L})\nEquation(p, 0.9334325*atm)\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L}).evalf(4)\nEquation(p, 0.9334*atm)\n
\n
\n\nSubstituting an equation into another equation:
\n\n\n
>>> P, P1, P2, A1, A2, E1, E2 = symbols("P, P1, P2, A1, A2, E1, E2")\n>>> eq1 = Eqn(P, P1 + P2)\n>>> eq2 = Eqn(P1 / (A1 * E1), P2 / (A2 * E2))\n>>> P1_val = (eq1 - P2).swap\n>>> P1_val\nEquation(P1, P - P2)\n>>> eq2 = eq2.subs(P1_val)\n>>> eq2\nEquation((P - P2)/(A1*E1), P2/(A2*E2))\n>>> P2_val = solve(eq2.subs(P1_val), P2).args[0]\n>>> P2_val\nEquation(P2, A2*E2*P/(A1*E1 + A2*E2))\n
\n
\n\nCombining equations (Math with equations: lhs with lhs and rhs with rhs)
\n\n\n
>>> q = Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> t\nEquation(a, b/c)\n>>> q+t\nEquation(a*c + a, b/c + b/c**2)\n>>> q/t\nEquation(c, 1/c)\n>>> t**q\nEquation(a**(a*c), (b/c)**(b/c**2))\n
\n
\n\nUtility operations
\n\n\n
>>> t.reversed\nEquation(b/c, a)\n>>> t.swap\nEquation(b/c, a)\n>>> t.lhs\na\n>>> t.rhs\nb/c\n>>> t.as_Boolean()\nEq(a, b/c)\n
\n
\n\n.check()
convenience method for .as_Boolean().simplify()
\n\n\n
>>> from sympy import I, pi\n>>> Equation(pi*(I+2), pi*I+2*pi).check()\nTrue\n>>> Eqn(a,a+1).check()\nFalse\n
\n
\n\nDifferentiation\nDifferentiation is applied to both sides if the wrt variable appears on\nboth sides.
\n\n\n
>>> q=Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> diff(q,b)\nEquation(Derivative(a*c, b), c**(-2))\n>>> diff(q,c)\nEquation(a, -2*b/c**3)\n>>> diff(log(q),b)\nEquation(Derivative(log(a*c), b), 1/b)\n>>> diff(q,c,2)\nEquation(Derivative(a, c), 6*b/c**4)\n
\n
\n\nIf you specify multiple differentiation all at once the assumption\nis order of differentiation matters and the lhs will not be\nevaluated.
\n\n\n
>>> diff(q,c,b)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
\n
\n\nTo overcome this specify the order of operations.
\n\n\n
>>> diff(diff(q,c),b)\nEquation(Derivative(a, b), -2/c**3)\n
\n
\n\nBut the reverse order returns an unevaulated lhs (a may depend on b).
\n\n\n
>>> diff(diff(q,b),c)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
\n
\n\nIntegration can only be performed on one side at a time.
\n\n\n
>>> q=Eqn(a*c,b/c)\n>>> integrate(q,b,side='rhs')\nb**2/(2*c)\n>>> integrate(q,b,side='lhs')\na*b*c\n
\n
\n\nMake a pretty statement of integration from an equation
\n\n\n
>>> Eqn(Integral(q.lhs,b),integrate(q,b,side='rhs'))\nEquation(Integral(a*c, b), b**2/(2*c))\n
\n
\n\nIntegration of each side with respect to different variables
\n\n\n
>>> q.dorhs.integrate(b).dolhs.integrate(a)\nEquation(a**2*c/2, b**2/(2*c))\n
\n
\n\nAutomatic solutions using sympy solvers. THIS IS EXPERIMENTAL. Please\nreport issues at https://github.com/gutow/Algebra_with_Sympy/issues.
\n\n\n
>>> tosolv = Eqn(a - b, c/a)\n>>> solve(tosolv,a)\nFiniteSet(Equation(a, b/2 - sqrt(b**2 + 4*c)/2), Equation(a, b/2 + sqrt(b**2 + 4*c)/2))\n>>> solve(tosolv, b)\nFiniteSet(Equation(b, (a**2 - c)/a))\n>>> solve(tosolv, c)\nFiniteSet(Equation(c, a**2 - a*b))\n
\n
\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.__init__", "kind": "function", "doc": "This is a class to hold parameters that control behavior of\nthe algebra_with_sympy package.
\n\nSettings
\n\nPrinting
\n\nIn interactive environments the default output of an equation is a\nhuman readable string with the two sides connected by an equals\nsign or a typeset equation with the two sides connected by an equals sign.\nprint(Eqn)
or str(Eqn)
will return this human readable text version of\nthe equation as well. This is consistent with python standards, but not\nsympy, where str()
is supposed to return something that can be\ncopy-pasted into code. If the equation has a declared name as in eq1 =\nEqn(a,b/c)
the name will be displayed to the right of the equation in\nparentheses (eg. a = b/c (eq1)
). Use print(repr(Eqn))
instead of\nprint(Eqn)
or repr(Eqn)
instead of str(Eqn)
to get a code\ncompatible version of the equation.
\n\nYou can adjust this behavior using some flags that impact output:
\n\n\nalgwsym_config.output.show_code
default is False
. \nalgwsym_config.output.human_text
default is True
. \nalgwsym_config.output.label
default is True
. \nalgwsym_config.output.latex_as_equations
default is False
\n
\n\nIn interactive environments you can get both types of output by setting\nthe algwsym_config.output.show_code
flag. If this flag is true\ncalls to latex
and str
will also print an additional line \"code\nversion: repr(Eqn)
\". Thus in Jupyter you will get a line of typeset\nmathematics output preceded by the code version that can be copy-pasted.\nDefault is False
.
\n\nA second flag algwsym_config.output.human_text
is useful in\ntext-based interactive environments such as command line python or\nipython. If this flag is true repr
will return str
. Thus the human\nreadable text will be printed as the output of a line that is an\nexpression containing an equation.\nDefault is True
.
\n\nSetting both of these flags to true in a command line or ipython\nenvironment will show both the code version and the human readable text.\nThese flags impact the behavior of the print(Eqn)
statement.
\n\nThe third flag algwsym_config.output.label
has a default value of\nTrue
. Setting this to False
suppresses the labeling of an equation\nwith its python name off to the right of the equation.
\n\nThe fourth flag algwsym_config.output.latex_as_equations
has\na default value of False
. Setting this to True
wraps\noutput as LaTex equations wrapping them in \\begin{equation}...\\end{\nequation}
.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.__init__", "kind": "function", "doc": "This holds settings that impact output.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.show_code", "kind": "variable", "doc": "If True
code versions of the equation expression will be\noutput in interactive environments. Default = False
.
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.human_text", "kind": "variable", "doc": "If True
the human readable equation expression will be\noutput in text interactive environments. Default = False
.
\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.solve_to_list", "kind": "variable", "doc": "If True
the results of a call to solve(...)
will return a\nPython list
rather than a Sympy FiniteSet
. This recovers\nbehavior for versions before 0.11.0.
\n\nNote: setting this True
means that expressions within the\nreturned solutions will not be pretty-printed in Jupyter and\nIPython.
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.latex_as_equations", "kind": "variable", "doc": "If True
any output that is returned as LaTex for\npretty-printing will be wrapped in the formal Latex for an\nequation. For example rather than
\n\n$\\frac{a}{b}=c$\n
\n\nthe output will be
\n\n\\begin{equation}\\frac{a}{b}=c\\end{equation}\n
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.label", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.label", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.__init__", "kind": "function", "doc": "This class holds settings for how numerical computation and\ninputs are handled.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.integers_as_exact", "kind": "function", "doc": "This is a flag for informational purposes and interface\nconsistency. Changing the value will not change the behavior.
\n\nTo change the behavior call:
\n\n\nunset_integers_as_exact()
to turn this feature off. \nset_integers_as_exact()
to turn this feature on (on by\ndefault). \n
\n\nIf set to True
(the default) and if running in an\nIPython/Jupyter environment any number input without a decimal\nwill be interpreted as a sympy integer. Thus, fractions and\nrelated expressions will not evalute to floating point numbers,\nbut be maintained as exact expressions (e.g. 2/3 -> 2/3 not the\nfloat 0.6666...).
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.ip": {"fullname": "algebra_with_sympy.algebraic_equation.ip", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "ip", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.formatter": {"fullname": "algebra_with_sympy.algebraic_equation.formatter", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "formatter", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.set_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "set_integers_as_exact", "kind": "function", "doc": "This operation causes any number input without a decimal that is\npart of a Sympy expression to be interpreted as a sympy\ninteger, by using a custom preparser to cast integers within Sympy\nexpressions as Sympy integers (Integer()
). It also sets the flag\nalgwsym_config.numerics.integers_as_exact = True
This is the default\nmode of algebra_with_sympy. To turn this off call\nunset_integers_as_exact()
.
\n\nNOTE: 2/3
--> 0.6666...
even when this is set, but 2*x/3
-->\nInteger(2)/Integer(3)*x
if x is a sympy object. If x
is just a Python\nobject 2*x/3
--> x*0.6666666666...
.
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.unset_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "unset_integers_as_exact", "kind": "function", "doc": "This operation disables forcing of numbers input without\ndecimals being interpreted as sympy integers. Numbers input without a\ndecimal may be interpreted as floating point if they are part of an\nexpression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It\nalso sets the flag algwsym_config.numerics.integers_as_exact = False
.\nCall set_integers_as_exact()
to avoid this conversion of rational\nfractions and related expressions to floating point. Algebra_with_sympy\nstarts with set_integers_as_exact()
enabled (\nalgwsym_config.numerics.integers_as_exact = True
).
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eqn", "kind": "variable", "doc": "\n", "default_value": "<class 'sympy.core.equation.Equation'>"}, "algebra_with_sympy.algebraic_equation.units": {"fullname": "algebra_with_sympy.algebraic_equation.units", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "units", "kind": "function", "doc": "This operation declares the symbols to be positive values, so that sympy\nwill handle them properly when simplifying expressions containing units.\nUnits defined this way are just unit symbols. If you want units that are\naware of conversions see sympy.physics.units.
\n\nParameters
\n\n\n- string names: a string containing a space separated list of\nsymbols to be treated as units.
\n
\n\nReturns
\n\n\n calls name = symbols(name,\npositive=True)
in the interactive namespace for each symbol name.
\n
\n", "signature": "(names):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solve": {"fullname": "algebra_with_sympy.algebraic_equation.solve", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solve", "kind": "function", "doc": "Override of sympy solve()
.
\n\nIf passed an expression and variable(s) to solve for it behaves\nalmost the same as normal solve with dict = True
, except that solutions\nare wrapped in a FiniteSet() to guarantee that the output will be pretty\nprinted in Jupyter like environments.
\n\nIf passed an equation or equations it returns solutions as a\nFiniteSet()
of solutions, where each solution is represented by an\nequation or set of equations.
\n\nTo get a Python list
of solutions (pre-0.11.0 behavior) rather than a\nFiniteSet
issue the command algwsym_config.output.solve_to_list = True
.\nThis also prevents pretty-printing in IPython and Jupyter.
\n\nExamples
\n\n\n
>>> a, b, c, x, y = symbols('a b c x y', real = True)\n>>> import sys\n>>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.\n>>> eq1 = Eqn(abs(2*x+y),3)\n>>> eq2 = Eqn(abs(x + 2*y),3)\n>>> B = solve((eq1,eq2))\n
\n
\n\nDefault human readable output on command line
\n\n\n
>>> B\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
\n
\n\nTo get raw output turn off by setting
\n\n\n
>>> algwsym_config.output.human_text=False\n>>> B\nFiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n
\n
\n\nPre-0.11.0 behavior where a python list of solutions is returned
\n\n\n
>>> algwsym_config.output.solve_to_list = True\n>>> solve((eq1,eq2))\n[[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]\n>>> algwsym_config.output.solve_to_list = False # reset to default\n
\n
\n\nalgwsym_config.output.human_text = True
with\nalgwsym_config.output.how_code=True
shows both.\nIn Jupyter-like environments show_code=True
yields the Raw output and\na typeset version. If show_code=False
(the default) only the\ntypeset version is shown in Jupyter.
\n\n\n
>>> algwsym_config.output.show_code=True\n>>> algwsym_config.output.human_text=True\n>>> B\nCode version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
\n
\n", "signature": "(f, *symbols, **flags):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solveset": {"fullname": "algebra_with_sympy.algebraic_equation.solveset", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solveset", "kind": "function", "doc": "Very experimental override of sympy solveset, which we hope will replace\nsolve. Much is not working. It is not clear how to input a system of\nequations unless you directly select linsolve
, etc...
\n", "signature": "(f, symbols, domain=Complexes):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality": {"fullname": "algebra_with_sympy.algebraic_equation.Equality", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality", "kind": "class", "doc": "Extension of Equality class to include the ability to convert it to an\nEquation.
\n", "bases": "sympy.core.relational.Equality"}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Equation", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Equation", "kind": "function", "doc": "Return: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Eqn", "kind": "function", "doc": "Synonym for to_Equation.\nReturn: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.default_assumptions", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.default_assumptions", "kind": "variable", "doc": "\n", "default_value": "{}"}, "algebra_with_sympy.algebraic_equation.Eq": {"fullname": "algebra_with_sympy.algebraic_equation.Eq", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eq", "kind": "variable", "doc": "\n", "default_value": "<class 'algebra_with_sympy.algebraic_equation.Equality'>"}, "algebra_with_sympy.algebraic_equation.abs": {"fullname": "algebra_with_sympy.algebraic_equation.abs", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "abs", "kind": "variable", "doc": "\n", "default_value": "Abs"}, "algebra_with_sympy.preparser": {"fullname": "algebra_with_sympy.preparser", "modulename": "algebra_with_sympy.preparser", "kind": "module", "doc": "\n"}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"fullname": "algebra_with_sympy.preparser.algebra_with_sympy_preparser", "modulename": "algebra_with_sympy.preparser", "qualname": "algebra_with_sympy_preparser", "kind": "function", "doc": "In IPython compatible environments (Jupyter, IPython, etc...) this supports\na special compact input method for equations.
\n\nThe syntax supported is equation_name =@ equation.lhs = equation.rhs
,\nwhere equation_name
is a valid Python name that can be used to refer to\nthe equation later. equation.lhs
is the left-hand side of the equation\nand equation.rhs
is the right-hand side of the equation. Each side of the\nequation must parse into a valid Sympy expression.
\n\nNote: This does not support line continuation. Long equations should be\nbuilt by combining expressions using names short enough to do this on one\nline. The alternative is to use equation_name = Eqn(long ...\nexpressions ... with ... multiple ... lines)
.
\n\nNote: If the equation_name
is omitted the equation will be formed,\nbut it will not be assigned to a name that can be used to refer to it\nlater. You may be able to access it through one of the special IPython\nunderscore names. This is not recommended.
\n\nTHIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT\nBEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED\nDIRECTLY BY A USER
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"fullname": "algebra_with_sympy.preparser.toIntegerInSympyExpr", "modulename": "algebra_with_sympy.preparser", "qualname": "toIntegerInSympyExpr", "kind": "function", "doc": "This function takes a string of valid Python and wraps integers within Sympy expressions\nin sympy.Integer()
to make them Sympy integers rather than Python Int()
. The\nadvantage of this is that calculations with Integer()
types can be exact. This function\nis careful not to wrap Int()
types that are not part of Sympy expressions, making it\npossible for this functionality to exist with operations (e.g. array and numpy indexing)\nthat are not compatible with the Integer()
type.
\n", "signature": "(string):", "funcdef": "def"}, "algebra_with_sympy.preparser.integers_as_exact": {"fullname": "algebra_with_sympy.preparser.integers_as_exact", "modulename": "algebra_with_sympy.preparser", "qualname": "integers_as_exact", "kind": "function", "doc": "This preparser uses sympy.interactive.session.int_to_Integer
to\nconvert numbers without decimal points into sympy integers so that math\non them will be exact rather than defaulting to floating point. This\nshould not be called directly by the user. It is plugged into the\nIPython preparsing sequence when the feature is requested. The default for\nAlgebra_with_sympy is to use this preparser. This can be turned on and\noff using the Algebra_with_sympy functions:
\n\n\nset_integers_as_exact()
\nunset_integers_as_exact()
\nNOTE: This option does not work in plain vanilla Python sessions. You\nmust be running in an IPython environment (Jupyter, Notebook, Colab,\netc...). \n
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.version": {"fullname": "algebra_with_sympy.version", "modulename": "algebra_with_sympy.version", "kind": "module", "doc": "\n"}}, "docInfo": {"algebra_with_sympy": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3534}, "algebra_with_sympy.proper_sympy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 4002}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 530}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 65}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 50}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 15}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 126}, "algebra_with_sympy.algebraic_equation.ip": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.formatter": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 133}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 102}, "algebra_with_sympy.algebraic_equation.Eqn": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.units": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 100}, "algebra_with_sympy.algebraic_equation.solve": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 834}, "algebra_with_sympy.algebraic_equation.solveset": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 38}, "algebra_with_sympy.algebraic_equation.Equality": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 17}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.Eq": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.abs": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 229}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 97}, "algebra_with_sympy.preparser.integers_as_exact": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "algebra_with_sympy.version": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 34, "save": true}, "index": {"qualname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.version": {"tf": 1}}, "df": 1}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 3, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}}, "df": 1}}}}, "x": {"2": {"7": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.units": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 3.1622776601683795}}, "df": 14, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "doc": {"root": {"0": {"0": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"0": {"6": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 7}, "1": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.47213595499958}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "2": {"0": {"2": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "/": {"3": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "/": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2}, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "3": {"9": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}}, "df": 4}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "5": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "9": {"3": {"3": {"4": {"3": {"2": {"5": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 31.448370387032774}, "algebra_with_sympy.proper_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 50.049975024968795}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 11}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 5.744562646538029}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 20.149441679609886}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 5.830951894845301}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 4.242640687119285}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 4.69041575982343}, "algebra_with_sympy.version": {"tf": 1.7320508075688772}}, "df": 34, "a": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "docs": {"algebra_with_sympy": {"tf": 6.164414002968976}, "algebra_with_sympy.algebraic_equation": {"tf": 7.483314773547883}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 12, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "d": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 7}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}}, "df": 1}, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "q": {"1": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}, "4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "5": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 8.366600265340756}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.605551275463989}}, "df": 11, "s": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 7}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 5.656854249492381}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 6.244997998398398}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 13, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 5, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "n": {"docs": {"algebra_with_sympy": {"tf": 7}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 13, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 4}, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 5.196152422706632}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 11, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 7, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.4641016151377544}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 7.211102550927978}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}}, "df": 13, "f": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "f": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 12, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.605551275463989}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 5.385164807134504}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3}}, "df": 12}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 14}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}, "e": {"docs": {"algebra_with_sympy": {"tf": 10.198039027185569}, "algebra_with_sympy.algebraic_equation": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.7416573867739413}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 18, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "m": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 8}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 6.708203932499369}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": null}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "\\": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 16.522711641858304}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 6.708203932499369}}, "df": 3}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}}, "df": 1, "y": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.47213595499958}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "r": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "#": {"2": {"1": {"3": {"3": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1, "p": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}, "*": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 6}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}}, "df": 3, "y": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}, "e": {"docs": {"algebra_with_sympy": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.6457513110645907}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 6}, "g": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "u": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 2}, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2.23606797749979}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "o": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}}, "*": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}, "k": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 4, "*": {"0": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "^": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "docs": {}, "df": 0}}, "q": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4.47213595499958}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
+ /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"algebra_with_sympy": {"fullname": "algebra_with_sympy", "modulename": "algebra_with_sympy", "kind": "module", "doc": "Algebraic Equations with SymPy
\n\nIntroduction | Output Formatting\n| Installation |\nTry Live | Issues or Comments |\nChange Log |\nLicense\n| GIT Repository\n| PyPi Link
\n\n\n\nIntroduction
\n\n
\n\nThis tool defines relations that all high school and college students would\nrecognize as mathematical equations. \nThey consist of a left hand side (lhs) and a right hand side (rhs) connected by\nthe relation operator \"=\". In addition, it sets some convenient defaults and \nprovides some controls of output formatting that may be useful even if\nyou do not use the Equation
class (see Conveniences for\nSymPy).
\n\nThis tool applies operations to both sides of the equation simultaneously, just\nas students are taught to do when \nattempting to isolate (solve for) a variable. Thus the statement Equation/b
\nyields a new equation Equation.lhs/b = Equation.rhs/b
\n\nThe intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra\nin a stepwise fashion using as close to standard mathematical notation as \npossible. In this way more people can successfully perform \nalgebraic rearrangements without stumbling\nover missed details such as a negative sign.
\n\nA simple example as it would appear in a Jupyter \nnotebook is shown immediately below:
\n\n\n\nThe last cell illustrates how it is possible to substitute numbers with \nunits into the solved equation to calculate a numerical solution with \nproper units. The units(...)
operation is part this package, not Sympy.
\n\nIn IPython environments (IPython, Jupyter, Google Colab, etc...) there is \nalso a shorthand syntax for entering equations provided through the IPython \npreparser. An equation can be specified as eq1 =@ a/b = c/d
.
\n\n\n\nIf no Python name is \nspecified for the equation (no eq_name
to the left of =@
), the equation \nwill still be defined, but will not be easily accessible for further \ncomputation. The =@
symbol combination was chosen to avoid conflicts with \nreserved python symbols while minimizing impacts on syntax highlighting \nand autoformatting.
\n\nMore examples of the capabilities of Algebra with Sympy are \nhere.
\n\nMany math packages such as SageMath \nand Maxima have similar capabilities, \nbut require more knowledge of command syntax, plus they cannot easily be \ninstalled in a generic python environment.
\n\n\n\nEven if you do not use the Equation
class, there are some convenience \ntools and defaults that will probably make interactive use of SymPy in \nJupyter/IPython environments easier:
\n\n\n- By default, all numbers in Sympy expressions without decimal points are \ninterpreted as integers (e.g.
2/3*x
, where x is a sympy symbol, -> \n2*x/3
not x*0.6666...
, but if x is just a plain Python object then 2/3*x
\n-> x*0.66666...
). This can be turned off with unset_integers_as_exact()
, \nwhich leads to standard Python behavior (2/3*x
-> x*0.6666...
) even for \nSympy expressions. Turn on with set_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
. \n- Results of
solve()
are wrapped in FiniteSet()
to force pretty-printing \nof all of a solution set. See Controlling the Format of Interactive \nOutputs. \n- It is possible to set the default display to show both the pretty-printed \nresult and the code version simultaneously. See Controlling the Format of Interactive \nOutputs.
\n
\n\n\n\n
\n\n\n- These controls impact all Sympy objects and the
Equation
class. \n- In graphical environments (Jupyter) you will get rendered Latex such as \n$\\frac{a}{b} = \\frac{c}{d}$ or $e^{\\frac{-x^2}{\\sigma^2}}$. To also see the \ncode representation (what can be copied and pasted for \nadditional computation) set
algwsym_config.output.show_code = True
. \nThis will print the code version (e.g. Equation(a,b/c)
) of equations \nand sympy expression in addition to the human readable version. This code \nversion can be accessed directly by calling repr()
on the \nequation or expression. \n
\n\n\nIn interactive text environments (IPython and command line) The human \nreadable string version of Sympy expressions are returned (for Equations
a \n= b rather than Equation(a,b)). This is equivalent to Calling print()
\nor str()
on an expression.
\n\n\n- To have the code version (can be copied and pasted as a \nPython statement) returned, set
algwsym_config.output.human_text = False
. \n- Setting both
algwsym_config.output.human_text = True
\nand algwsym_config.output.show_code = True
, will return both the \ncode and human readable versions. \n
\nThe equation label can be turned off by setting\nalgwsym_config.output.label = False
.
\nAutomatic wrapping of Equations
as Latex equations can be activated \nby setting algwsym_config.output.latex_as_equations
to True
. The \ndefault is False
. Setting this to True
wraps output as LaTex equations,\nwrapping them in \\begin{equation}...\\end{equation}
. Equations formatted \nthis way will not be labeled with the internal name for the equation, \nindependent of the setting of algwsym_config.output.label
.
\nBy default solutions output by solve()
are returned as a SymPy \nFiniteSet()
to force typesetting of the included solutions. To get Python \nlists instead you can override this for the whole session by setting\nalgwsym_config.output.solve_to_list = True
. For a one-off, simply \nwrap the output of a solve in list()
(e.g. list(solve(...))
). One \nadvantage of list mode is that lists can be ordered. When\nalgwsym_config.output.solve_to_list = True
solve()
maintains the \nsolutions in the order the solve for variables were input.
\n
\n\nSetup/Installation
\n\n
\n\n\n- Use pip to install in your python environment: \n
pip install -U Algebra-with-SymPy
\n- To use in a running python session issue\nthe following command :
from algebra_with_sympy import *
. \nThis will also import the SymPy tools. \n- If you want to isolate this tool from the global namespace you are \nworking with change the import statement \nto
import algebra_with_sympy as spa
, where \nspa
stands for \"SymPy Algebra\". Then all calls would be made to \nspa.funcname()
. WARNING: Doing this makes shorthand equation input and \ncontrol of interactive output formats unavailable. To recover this \nfunctionality the following code must be run in the interactive session. \n
\n\nEquation = spa.Equation\nEqn = Equation\nalgwsym_config = spa.algwsym_config\n
\n\nTry in binder
\n\n\n
\n\n\n\n
\n\n\n\nChange Log
\n\n
\n\n\n- 1.1.0 (July 22, 2024)\n
\n- Setting integers as exact (
set_integers_as_exact()
, the default) now \nonly sets integers as exact within Sympy and Algebra_with_Sympy \nexpressions. This increases compatibility with other packages that \ndepend on integers being Python integers. \n- Refuse to import Algebra_with_Sympy if an incompatible \nversion of Sympy is installed in the environment.
\n- Added warning explaining how to install a compatible version of Sympy.
\n
\n- 1.0.2 (July 5, 2024)\n
\n- Removed requirements for Jupyter and Jupyterlab as code will work in \nvanilla python or Google Colab.
\n- Workaround for Google Colab's inconsistent handling of mixed Latex and \nplain text strings. This impacted display of equation labels in Colab.
\n- BUG FIX: catch IPython not installed so that can run in plain vanilla \npython.
\n
\n- 1.0.1 (May 22, 2024)\n
\n- BUG FIX: equation labels that include underscore characters \"_\" are now \naccepted.
\n- BUG FIX: wrapping equations formatted as LaTex equation (ie. surrounded \nby
\\begin{equation}...\\end{equation}
) in the $..$
code used to \nindicate markdown for MathJax was causing output errors in Quarto when \noutputing to .tex or .pdf. This is now fixed without negatively \nimpacting MathJax rendering. \n- BUG FIX: Singleton results of solve unnecessarily wrapped by extra list \nor finiteset. No longer double nested.
\n- BUG FIX: When returning lists make solve respect user order of solutions.
\n- BUG FIX: Equation output threw error when Algebra_with_Sympy was \nimported as a submodule. Equation labeling turned off for this type of \nimport to avoid error.
\n- BUG FIX: Equation labels are now copyable even with the newer MathJax \ncommonHTML rendering.
\n- Updates to requirements.txt.
\n- Documentation updates.
\n
\n- 1.0.0 (January 2, 2024)\n
\n- Added convenience operation
units(...)
which takes a string of space \nseparated symbols to use as units. This simply declares the symbols \nto be positive, making them behave as units. This does not create units \nthat know about conversions, prefixes or systems of units. This lack \nis on purpose to provide units that require the user to worry about \nconversions (ideal in a teaching situation). To get units with built-in \nconversions see sympy.physics.units
. \n- Fixed issue #23 where
cos()
multiplied by a factor was not the same \ntype of object after simplify()
acted on an expression. Required \nembedding the Equation
type in the sympy library. Until Equation
is \nincorporated into the primary Sympy repository a customized version of \nthe latest stable release will be used. \n- Fixed issue where trailing comments (ie.
# a comment
at the end of a \nline) lead to input errors using compact =@
notation. \nalgwsym_config.output.latex_as_equations
has a default value of False
.\n Setting this to True
wraps output as LaTex equations wrapping them \nin \\begin{equation}...\\end{equation}
. Equations formatted this way \nwill not be labeled with the internal name for the equation. \n
\n- 0.12.0 (July 12, 2023)\n
\n- Now defaults to interpreting numbers without decimal points as integers. \nThis can be turned off with
unset_integers_as_exact()
and on with\nset_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
. \n
\n- 0.11.0 (June 5, 2023)\n
\n- Formatting of
FiniteSets
overridden so that the contents always\npretty-print. This removes the necessity of special flags to get \npretty output from solve
. \n- Sympy
solve()
now works reliably with equations and outputs \npretty-printed solutions. \n- Added option
algwsym_config.output.solve_to_list = True
which causes \nsolve()
to return solutions sets as Python lists. Using this option \nprevents pretty-printing of the solutions produced by solve()
. \nalgwsym_config.output.show_code
and \nalgwsym_config.output.human_text
now work for all sympy objects, not \njust Equation
objects. This works\nin terminal, IPython terminal and Jupyter. This is achieved by hooking \ninto the python display_hook
and IPython display_formatter
. \n- Added jupyter to requirements.txt so that virtual environment builds\nwill include jupyter.
\n- The way
__version__
was handled could break pip install. Changed to\ngenerating the internal version during setup. This means the version\nis now available as algwsym_version
. \n
\n- 0.10.0 (Sep. 5, 2022)\n
\n- Documentation updates and fixes.
\n- Significantly increased test coverage (~98%).
\n- Support for
Eqn.rewrite(Add)
\n- Solving (e.g.
solve(Eqn,x)
) now supported fully. Still experimental. \n- Bug fix: latex printing now supports custom printer.
\n- Substitution into an Equation using Equations is now \nsupported (e.g.
eq1.subs(eq2, eq3, ...)
). \nalgebra_with_sympy.__version__
is now available for version checking \nwithin python. \n- Bug fix: preparsing for
=@
syntax no longer blocks obj?
syntax for \ngetting docstrings in ipython. \n- More robust determination of equation names for labeling.
\n
\n- 0.9.4 (Aug. 11, 2022)\n
\n- Update to deal with new Sympy function
piecewise_exclusive
in v1.11. \n- Added user warning if a function does not extend for use with
Equations
\nas expected. This also allows the package to be used even when a function \nextension does fail. \n- Simplification of documentation preparation.
\n- Typo fixes in preparser error messages.
\n
\n- 0.9.3 (Aug. 9, 2022)\n
\n- Added check for new enough version of IPython to use the preparser.
\n- If IPython version too old, issue warning and do not accept
=@
shorthand. \n
\n- 0.9.2 (Jun. 5, 2022)\n
\n=@
shorthand syntax for defining equations in IPython compatible \nenvironments. \n- Fixed bug where
root()
override called sqrt()
on bare expressions. \n
\n- 0.9.1 (Mar. 24, 2022)\n
\n- Equations labeled with their python name, if they have one.
\n- Added flags to adjust human readable output and equation labeling.
\n- Accept equation as function argument in any position.
\n- First pass at
solve()
accepting equations. \n- Added override of
root()
to avoid warning messages. \n- More unit tests.
\n- First pass at documentation.
\n
\n- 0.9.0 functionality equivalent to extension of SymPy in\nPR#21333.
\n
\n\n\n\n\nThis program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.
\n\nCopyright - Algebra with Sympy Contributors 2021, 2022, 2023, 2024
\n\nDevelopment Notes
\n\nGeneral | Make Docs | \nRunning Tests | \nBuild PyPi Package|
\n\nGeneral Notes
\n\n
\n\n\n- TODOs\n
\n- Test collect when there isn't an available _eval_collect (not sure how \nto get there).
\n- Test for _binary_op NotImplemented error (not sure how to get there).
\n
\n- To consider\n
\n- Include Sympy Plot Backends\nin the default setup.
\n- Change
Equation
constructor to accept Equality
, Set
, List
or \nlhs, rhs
, rather than just lhs, rhs
. \n- Extend
.subs
to accept .subs(a=2*c, b = sin(q), ...)
. \n- MathLive on another web page as possible\ninput engine.
\n
\n
\n\nConstructing the Documentation
\n\n
\n\n\n- Make sure pdoc is installed and updated in the virtual environment
pip \ninstall -U pdoc
. \n- Update any
.md
files included in _init_.py
.\n\n- Generally URLs should be absolute, not relative.
\n
\n- At the root level run pdoc \n
\npdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg \n--logo-link https://gutow.github.io/Algebra_with_Sympy/\n--footer-text \"Algebra with Sympy vX.X.X\" --math -html -o docs \n./algebra_with_sympy\n
\nwhere X.X.X
is the version number. \n
\n\nTasks for Documentation
\n\n
\n\n\n- Readme.md & Development Notes.md\n
\n- Use absolute path to github pages for more examples.
\n
\n
\n\nRunning Tests
\n\n
\n\n\n- Install updated pytest in the virtual environment:\n
pipenv shell\npip install -U pytest\n
\n- Run standard tests:\n
pytest --ignore='Developer Testing' --ignore-glob='*test_preparser.py'
. \n- Run preparser tests:\n
ipython -m pytest tests/test_preparser.py
\n- Run doctests:\n
pytest --ignore='tests' --ignore='Developer Testing' \n--ignore-glob='*old*' --doctest-modules
\n
\n\nYou can run all the tests using the dotests script: ./dotests.sh
.
\n\nNOTE: Some warnings about invalid escape characters are expected because \nraw strings are being passed with specialized LaTex escaped characters.
\n\nBuilding PyPi package
\n\n
\n\n\n- Make sure to update the version number in setup.py first.
\n- Install updated setuptools and twine in the virtual environment:\n
pipenv shell\npip install -U setuptools wheel twine\n
\n- Build the distribution
python -m setup sdist bdist_wheel
. \n- Test it on
test.pypi.org
.\n\n- Upload it (you will need an account on test.pypi.org):\n
python -m twine upload --repository testpypi dist/*
. \n- Create a new virtual environment and test install into it:\n
exit # to get out of the current environment\ncd <somewhere>\nmkdir <new virtual environment>\ncd <new directory>\npipenv shell #creates the new environment and enters it.\npip install -i https://test.pypi.org/..... # copy actual link from the\n # repository on test.pypi.\n
\nThere are often install issues because sometimes only older versions of\nsome of the required packages are available on test.pypi.org. If this\nis the only problem change the version to end in rc0
for release\ncandidate and try it on the regular pypi.org as described below for\nreleasing on PyPi. \n- After install test by running a jupyter notebook in the virtual \nenvironment.
\n
\n
\n\nReleasing on PyPi
\n\n\nProceed only if testing of the build is successful.
\n\n\n- Double check the version number in version.py.
\n- Rebuild the release:
python -m setup sdist bdist_wheel
. \n- Upload it:
python -m twine upload dist/*
\n- Make sure it works by installing it in a clean virtual environment. This\nis the same as on test.pypi.org except without
-i https://test.pypy...
. If\nit does not work, pull the release. \n
\n"}, "algebra_with_sympy.proper_sympy": {"fullname": "algebra_with_sympy.proper_sympy", "modulename": "algebra_with_sympy", "qualname": "proper_sympy", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation": {"fullname": "algebra_with_sympy.algebraic_equation", "modulename": "algebra_with_sympy.algebraic_equation", "kind": "module", "doc": "This package uses a special version of sympy which defines an equation \nwith a left-hand-side (lhs) and a right-\nhand-side (rhs) connected by the \"=\" operator (e.g. p*V = n*R*T
).
\n\nThe intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra in a stepwise fashion. In this way more people\ncan successfully perform algebraic rearrangements without stumbling over\nmissed details such as a negative sign. This mimics the capabilities available\nin SageMath and\nMaxima.
\n\nThis package also provides convenient settings for interactive use on the \ncommand line, in ipython and Jupyter notebook environments. See the \ndocumentation at https://gutow.github.io/Algebra_with_Sympy/.
\n\nExplanation
\n\nThis class defines relations that all high school and college students\nwould recognize as mathematical equations. At present only the \"=\" relation\noperator is recognized.
\n\nThis class is intended to allow using the mathematical tools in SymPy to\nrearrange equations and perform algebra in a stepwise fashion. In this\nway more people can successfully perform algebraic rearrangements without\nstumbling over missed details such as a negative sign.
\n\nCreate an equation with the call Equation(lhs,rhs)
, where lhs
and\nrhs
are any valid Sympy expression. Eqn(...)
is a synonym for\nEquation(...)
.
\n\nParameters
\n\nlhs: sympy expression, class Expr
.\nrhs: sympy expression, class Expr
.\nkwargs:
\n\nExamples
\n\nNOTE: All the examples below are in vanilla python. You can get human\nreadable eqautions \"lhs = rhs\" in vanilla python by adjusting the settings\nin algwsym_config
(see it's documentation). Output is human readable by\ndefault in IPython and Jupyter environments.
\n\n\n
>>> from algebra_with_sympy import *\n>>> a, b, c, x = var('a b c x')\n>>> Equation(a,b/c)\nEquation(a, b/c)\n>>> t=Eqn(a,b/c)\n>>> t\nEquation(a, b/c)\n>>> t*c\nEquation(a*c, b)\n>>> c*t\nEquation(a*c, b)\n>>> exp(t)\nEquation(exp(a), exp(b/c))\n>>> exp(log(t))\nEquation(a, b/c)\n
\n
\n\nSimplification and Expansion
\n\n\n
>>> f = Eqn(x**2 - 1, c)\n>>> f\nEquation(x**2 - 1, c)\n>>> f/(x+1)\nEquation((x**2 - 1)/(x + 1), c/(x + 1))\n>>> (f/(x+1)).simplify()\nEquation(x - 1, c/(x + 1))\n>>> simplify(f/(x+1))\nEquation(x - 1, c/(x + 1))\n>>> (f/(x+1)).expand()\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> expand(f/(x+1))\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> factor(f)\nEquation((x - 1)*(x + 1), c)\n>>> f.factor()\nEquation((x - 1)*(x + 1), c)\n>>> f2 = f+a*x**2+b*x +c\n>>> f2\nEquation(a*x**2 + b*x + c + x**2 - 1, a*x**2 + b*x + 2*c)\n>>> collect(f2,x)\nEquation(b*x + c + x**2*(a + 1) - 1, a*x**2 + b*x + 2*c)\n
\n
\n\nApply operation to only one side
\n\n\n
>>> poly = Eqn(a*x**2 + b*x + c*x**2, a*x**3 + b*x**3 + c*x)\n>>> poly.applyrhs(factor,x)\nEquation(a*x**2 + b*x + c*x**2, x*(c + x**2*(a + b)))\n>>> poly.applylhs(factor)\nEquation(x*(a*x + b + c*x), a*x**3 + b*x**3 + c*x)\n>>> poly.applylhs(collect,x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n
\n
\n\n.apply...
also works with user defined python functions
\n\n\n
>>> def addsquare(eqn):\n... return eqn+eqn**2\n...\n>>> t.apply(addsquare)\nEquation(a**2 + a, b**2/c**2 + b/c)\n>>> t.applyrhs(addsquare)\nEquation(a, b**2/c**2 + b/c)\n>>> t.apply(addsquare, side = 'rhs')\nEquation(a, b**2/c**2 + b/c)\n>>> t.applylhs(addsquare)\nEquation(a**2 + a, b/c)\n>>> addsquare(t)\nEquation(a**2 + a, b**2/c**2 + b/c)\n
\n
\n\nInaddition to .apply...
there is also the less general .do
,\n.dolhs
, .dorhs
, which only works for operations defined on the\nExpr
class (e.g..collect(), .factor(), .expand()
, etc...).
\n\n\n
>>> poly.dolhs.collect(x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n>>> poly.dorhs.collect(x)\nEquation(a*x**2 + b*x + c*x**2, c*x + x**3*(a + b))\n>>> poly.do.collect(x)\nEquation(b*x + x**2*(a + c), c*x + x**3*(a + b))\n>>> poly.dorhs.factor()\nEquation(a*x**2 + b*x + c*x**2, x*(a*x**2 + b*x**2 + c))\n
\n
\n\npoly.do.exp()
or other sympy math functions will raise an error.
\n\nRearranging an equation (simple example made complicated as illustration)
\n\n\n
>>> p, V, n, R, T = var('p V n R T')\n>>> eq1=Eqn(p*V,n*R*T)\n>>> eq1\nEquation(V*p, R*T*n)\n>>> eq2 =eq1/V\n>>> eq2\nEquation(p, R*T*n/V)\n>>> eq3 = eq2/R/T\n>>> eq3\nEquation(p/(R*T), n/V)\n>>> eq4 = eq3*R/p\n>>> eq4\nEquation(1/T, R*n/(V*p))\n>>> 1/eq4\nEquation(T, V*p/(R*n))\n>>> eq5 = 1/eq4 - T\n>>> eq5\nEquation(0, -T + V*p/(R*n))\n
\n
\n\nSubstitution (#'s and units)
\n\n\n
>>> L, atm, mol, K = var('L atm mol K', positive=True, real=True) # units\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L})\nEquation(p, 0.9334325*atm)\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L}).evalf(4)\nEquation(p, 0.9334*atm)\n
\n
\n\nSubstituting an equation into another equation:
\n\n\n
>>> P, P1, P2, A1, A2, E1, E2 = symbols("P, P1, P2, A1, A2, E1, E2")\n>>> eq1 = Eqn(P, P1 + P2)\n>>> eq2 = Eqn(P1 / (A1 * E1), P2 / (A2 * E2))\n>>> P1_val = (eq1 - P2).swap\n>>> P1_val\nEquation(P1, P - P2)\n>>> eq2 = eq2.subs(P1_val)\n>>> eq2\nEquation((P - P2)/(A1*E1), P2/(A2*E2))\n>>> P2_val = solve(eq2.subs(P1_val), P2).args[0]\n>>> P2_val\nEquation(P2, A2*E2*P/(A1*E1 + A2*E2))\n
\n
\n\nCombining equations (Math with equations: lhs with lhs and rhs with rhs)
\n\n\n
>>> q = Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> t\nEquation(a, b/c)\n>>> q+t\nEquation(a*c + a, b/c + b/c**2)\n>>> q/t\nEquation(c, 1/c)\n>>> t**q\nEquation(a**(a*c), (b/c)**(b/c**2))\n
\n
\n\nUtility operations
\n\n\n
>>> t.reversed\nEquation(b/c, a)\n>>> t.swap\nEquation(b/c, a)\n>>> t.lhs\na\n>>> t.rhs\nb/c\n>>> t.as_Boolean()\nEq(a, b/c)\n
\n
\n\n.check()
convenience method for .as_Boolean().simplify()
\n\n\n
>>> from sympy import I, pi\n>>> Equation(pi*(I+2), pi*I+2*pi).check()\nTrue\n>>> Eqn(a,a+1).check()\nFalse\n
\n
\n\nDifferentiation\nDifferentiation is applied to both sides if the wrt variable appears on\nboth sides.
\n\n\n
>>> q=Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> diff(q,b)\nEquation(Derivative(a*c, b), c**(-2))\n>>> diff(q,c)\nEquation(a, -2*b/c**3)\n>>> diff(log(q),b)\nEquation(Derivative(log(a*c), b), 1/b)\n>>> diff(q,c,2)\nEquation(Derivative(a, c), 6*b/c**4)\n
\n
\n\nIf you specify multiple differentiation all at once the assumption\nis order of differentiation matters and the lhs will not be\nevaluated.
\n\n\n
>>> diff(q,c,b)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
\n
\n\nTo overcome this specify the order of operations.
\n\n\n
>>> diff(diff(q,c),b)\nEquation(Derivative(a, b), -2/c**3)\n
\n
\n\nBut the reverse order returns an unevaulated lhs (a may depend on b).
\n\n\n
>>> diff(diff(q,b),c)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
\n
\n\nIntegration can only be performed on one side at a time.
\n\n\n
>>> q=Eqn(a*c,b/c)\n>>> integrate(q,b,side='rhs')\nb**2/(2*c)\n>>> integrate(q,b,side='lhs')\na*b*c\n
\n
\n\nMake a pretty statement of integration from an equation
\n\n\n
>>> Eqn(Integral(q.lhs,b),integrate(q,b,side='rhs'))\nEquation(Integral(a*c, b), b**2/(2*c))\n
\n
\n\nIntegration of each side with respect to different variables
\n\n\n
>>> q.dorhs.integrate(b).dolhs.integrate(a)\nEquation(a**2*c/2, b**2/(2*c))\n
\n
\n\nAutomatic solutions using sympy solvers. THIS IS EXPERIMENTAL. Please\nreport issues at https://github.com/gutow/Algebra_with_Sympy/issues.
\n\n\n
>>> tosolv = Eqn(a - b, c/a)\n>>> solve(tosolv,a)\nFiniteSet(Equation(a, b/2 - sqrt(b**2 + 4*c)/2), Equation(a, b/2 + sqrt(b**2 + 4*c)/2))\n>>> solve(tosolv, b)\nFiniteSet(Equation(b, (a**2 - c)/a))\n>>> solve(tosolv, c)\nFiniteSet(Equation(c, a**2 - a*b))\n
\n
\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.__init__", "kind": "function", "doc": "This is a class to hold parameters that control behavior of\nthe algebra_with_sympy package.
\n\nSettings
\n\nPrinting
\n\nIn interactive environments the default output of an equation is a\nhuman readable string with the two sides connected by an equals\nsign or a typeset equation with the two sides connected by an equals sign.\nprint(Eqn)
or str(Eqn)
will return this human readable text version of\nthe equation as well. This is consistent with python standards, but not\nsympy, where str()
is supposed to return something that can be\ncopy-pasted into code. If the equation has a declared name as in eq1 =\nEqn(a,b/c)
the name will be displayed to the right of the equation in\nparentheses (eg. a = b/c (eq1)
). Use print(repr(Eqn))
instead of\nprint(Eqn)
or repr(Eqn)
instead of str(Eqn)
to get a code\ncompatible version of the equation.
\n\nYou can adjust this behavior using some flags that impact output:
\n\n\nalgwsym_config.output.show_code
default is False
. \nalgwsym_config.output.human_text
default is True
. \nalgwsym_config.output.label
default is True
. \nalgwsym_config.output.latex_as_equations
default is False
\n
\n\nIn interactive environments you can get both types of output by setting\nthe algwsym_config.output.show_code
flag. If this flag is true\ncalls to latex
and str
will also print an additional line \"code\nversion: repr(Eqn)
\". Thus in Jupyter you will get a line of typeset\nmathematics output preceded by the code version that can be copy-pasted.\nDefault is False
.
\n\nA second flag algwsym_config.output.human_text
is useful in\ntext-based interactive environments such as command line python or\nipython. If this flag is true repr
will return str
. Thus the human\nreadable text will be printed as the output of a line that is an\nexpression containing an equation.\nDefault is True
.
\n\nSetting both of these flags to true in a command line or ipython\nenvironment will show both the code version and the human readable text.\nThese flags impact the behavior of the print(Eqn)
statement.
\n\nThe third flag algwsym_config.output.label
has a default value of\nTrue
. Setting this to False
suppresses the labeling of an equation\nwith its python name off to the right of the equation.
\n\nThe fourth flag algwsym_config.output.latex_as_equations
has\na default value of False
. Setting this to True
wraps\noutput as LaTex equations wrapping them in \\begin{equation}...\\end{\nequation}
.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.__init__", "kind": "function", "doc": "This holds settings that impact output.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.show_code", "kind": "variable", "doc": "If True
code versions of the equation expression will be\noutput in interactive environments. Default = False
.
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.human_text", "kind": "variable", "doc": "If True
the human readable equation expression will be\noutput in text interactive environments. Default = False
.
\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.solve_to_list", "kind": "variable", "doc": "If True
the results of a call to solve(...)
will return a\nPython list
rather than a Sympy FiniteSet
. This recovers\nbehavior for versions before 0.11.0.
\n\nNote: setting this True
means that expressions within the\nreturned solutions will not be pretty-printed in Jupyter and\nIPython.
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.latex_as_equations", "kind": "variable", "doc": "If True
any output that is returned as LaTex for\npretty-printing will be wrapped in the formal Latex for an\nequation. For example rather than
\n\n$\\frac{a}{b}=c$\n
\n\nthe output will be
\n\n\\begin{equation}\\frac{a}{b}=c\\end{equation}\n
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.label", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.label", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.__init__", "kind": "function", "doc": "This class holds settings for how numerical computation and\ninputs are handled.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.integers_as_exact", "kind": "function", "doc": "This is a flag for informational purposes and interface\nconsistency. Changing the value will not change the behavior.
\n\nTo change the behavior call:
\n\n\nunset_integers_as_exact()
to turn this feature off. \nset_integers_as_exact()
to turn this feature on (on by\ndefault). \n
\n\nIf set to True
(the default) and if running in an\nIPython/Jupyter environment any number input without a decimal\nwill be interpreted as a sympy integer. Thus, fractions and\nrelated expressions will not evalute to floating point numbers,\nbut be maintained as exact expressions (e.g. 2/3 -> 2/3 not the\nfloat 0.6666...).
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.ip": {"fullname": "algebra_with_sympy.algebraic_equation.ip", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "ip", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.formatter": {"fullname": "algebra_with_sympy.algebraic_equation.formatter", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "formatter", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.set_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "set_integers_as_exact", "kind": "function", "doc": "This operation causes any number input without a decimal that is\npart of a Sympy expression to be interpreted as a sympy\ninteger, by using a custom preparser to cast integers within Sympy\nexpressions as Sympy integers (Integer()
). It also sets the flag\nalgwsym_config.numerics.integers_as_exact = True
This is the default\nmode of algebra_with_sympy. To turn this off call\nunset_integers_as_exact()
.
\n\nNOTE: 2/3
--> 0.6666...
even when this is set, but 2*x/3
-->\nInteger(2)/Integer(3)*x
if x is a sympy object. If x
is just a Python\nobject 2*x/3
--> x*0.6666666666...
.
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.unset_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "unset_integers_as_exact", "kind": "function", "doc": "This operation disables forcing of numbers input without\ndecimals being interpreted as sympy integers. Numbers input without a\ndecimal may be interpreted as floating point if they are part of an\nexpression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It\nalso sets the flag algwsym_config.numerics.integers_as_exact = False
.\nCall set_integers_as_exact()
to avoid this conversion of rational\nfractions and related expressions to floating point. Algebra_with_sympy\nstarts with set_integers_as_exact()
enabled (\nalgwsym_config.numerics.integers_as_exact = True
).
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eqn", "kind": "variable", "doc": "\n", "default_value": "<class 'sympy.core.equation.Equation'>"}, "algebra_with_sympy.algebraic_equation.units": {"fullname": "algebra_with_sympy.algebraic_equation.units", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "units", "kind": "function", "doc": "This operation declares the symbols to be positive values, so that sympy\nwill handle them properly when simplifying expressions containing units.\nUnits defined this way are just unit symbols. If you want units that are\naware of conversions see sympy.physics.units.
\n\nParameters
\n\n\n- string names: a string containing a space separated list of\nsymbols to be treated as units.
\n
\n\nReturns
\n\n\n calls name = symbols(name,\npositive=True)
in the interactive namespace for each symbol name.
\n
\n", "signature": "(names):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solve": {"fullname": "algebra_with_sympy.algebraic_equation.solve", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solve", "kind": "function", "doc": "Override of sympy solve()
.
\n\nIf passed an expression and variable(s) to solve for it behaves\nalmost the same as normal solve with dict = True
, except that solutions\nare wrapped in a FiniteSet() to guarantee that the output will be pretty\nprinted in Jupyter like environments.
\n\nIf passed an equation or equations it returns solutions as a\nFiniteSet()
of solutions, where each solution is represented by an\nequation or set of equations.
\n\nTo get a Python list
of solutions (pre-0.11.0 behavior) rather than a\nFiniteSet
issue the command algwsym_config.output.solve_to_list = True
.\nThis also prevents pretty-printing in IPython and Jupyter.
\n\nExamples
\n\n\n
>>> a, b, c, x, y = symbols('a b c x y', real = True)\n>>> import sys\n>>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.\n>>> eq1 = Eqn(abs(2*x+y),3)\n>>> eq2 = Eqn(abs(x + 2*y),3)\n>>> B = solve((eq1,eq2))\n
\n
\n\nDefault human readable output on command line
\n\n\n
>>> B\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
\n
\n\nTo get raw output turn off by setting
\n\n\n
>>> algwsym_config.output.human_text=False\n>>> B\nFiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n
\n
\n\nPre-0.11.0 behavior where a python list of solutions is returned
\n\n\n
>>> algwsym_config.output.solve_to_list = True\n>>> solve((eq1,eq2))\n[[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]\n>>> algwsym_config.output.solve_to_list = False # reset to default\n
\n
\n\nalgwsym_config.output.human_text = True
with\nalgwsym_config.output.how_code=True
shows both.\nIn Jupyter-like environments show_code=True
yields the Raw output and\na typeset version. If show_code=False
(the default) only the\ntypeset version is shown in Jupyter.
\n\n\n
>>> algwsym_config.output.show_code=True\n>>> algwsym_config.output.human_text=True\n>>> B\nCode version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
\n
\n", "signature": "(f, *symbols, **flags):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solveset": {"fullname": "algebra_with_sympy.algebraic_equation.solveset", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solveset", "kind": "function", "doc": "Very experimental override of sympy solveset, which we hope will replace\nsolve. Much is not working. It is not clear how to input a system of\nequations unless you directly select linsolve
, etc...
\n", "signature": "(f, symbols, domain=Complexes):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality": {"fullname": "algebra_with_sympy.algebraic_equation.Equality", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality", "kind": "class", "doc": "Extension of Equality class to include the ability to convert it to an\nEquation.
\n", "bases": "sympy.core.relational.Equality"}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Equation", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Equation", "kind": "function", "doc": "Return: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Eqn", "kind": "function", "doc": "Synonym for to_Equation.\nReturn: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.default_assumptions", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.default_assumptions", "kind": "variable", "doc": "\n", "default_value": "{}"}, "algebra_with_sympy.algebraic_equation.Eq": {"fullname": "algebra_with_sympy.algebraic_equation.Eq", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eq", "kind": "variable", "doc": "\n", "default_value": "<class 'algebra_with_sympy.algebraic_equation.Equality'>"}, "algebra_with_sympy.algebraic_equation.abs": {"fullname": "algebra_with_sympy.algebraic_equation.abs", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "abs", "kind": "variable", "doc": "\n", "default_value": "Abs"}, "algebra_with_sympy.preparser": {"fullname": "algebra_with_sympy.preparser", "modulename": "algebra_with_sympy.preparser", "kind": "module", "doc": "\n"}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"fullname": "algebra_with_sympy.preparser.algebra_with_sympy_preparser", "modulename": "algebra_with_sympy.preparser", "qualname": "algebra_with_sympy_preparser", "kind": "function", "doc": "In IPython compatible environments (Jupyter, IPython, etc...) this supports\na special compact input method for equations.
\n\nThe syntax supported is equation_name =@ equation.lhs = equation.rhs
,\nwhere equation_name
is a valid Python name that can be used to refer to\nthe equation later. equation.lhs
is the left-hand side of the equation\nand equation.rhs
is the right-hand side of the equation. Each side of the\nequation must parse into a valid Sympy expression.
\n\nNote: This does not support line continuation. Long equations should be\nbuilt by combining expressions using names short enough to do this on one\nline. The alternative is to use equation_name = Eqn(long ...\nexpressions ... with ... multiple ... lines)
.
\n\nNote: If the equation_name
is omitted the equation will be formed,\nbut it will not be assigned to a name that can be used to refer to it\nlater. You may be able to access it through one of the special IPython\nunderscore names. This is not recommended.
\n\nTHIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT\nBEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED\nDIRECTLY BY A USER
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"fullname": "algebra_with_sympy.preparser.toIntegerInSympyExpr", "modulename": "algebra_with_sympy.preparser", "qualname": "toIntegerInSympyExpr", "kind": "function", "doc": "This function takes a string of valid Python and wraps integers within Sympy expressions\nin sympy.Integer()
to make them Sympy integers rather than Python Int()
. The\nadvantage of this is that calculations with Integer()
types can be exact. This function\nis careful not to wrap Int()
types that are not part of Sympy expressions, making it\npossible for this functionality to exist with operations (e.g. array and numpy indexing)\nthat are not compatible with the Integer()
type.
\n", "signature": "(string):", "funcdef": "def"}, "algebra_with_sympy.preparser.integers_as_exact": {"fullname": "algebra_with_sympy.preparser.integers_as_exact", "modulename": "algebra_with_sympy.preparser", "qualname": "integers_as_exact", "kind": "function", "doc": "This preparser uses sympy.interactive.session.int_to_Integer
to\nconvert numbers without decimal points into sympy integers so that math\non them will be exact rather than defaulting to floating point. This\nshould not be called directly by the user. It is plugged into the\nIPython preparsing sequence when the feature is requested. The default for\nAlgebra_with_sympy is to use this preparser. This can be turned on and\noff using the Algebra_with_sympy functions:
\n\n\nset_integers_as_exact()
\nunset_integers_as_exact()
\nNOTE: This option does not work in plain vanilla Python sessions. You\nmust be running in an IPython environment (Jupyter, Notebook, Colab,\netc...). \n
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.version": {"fullname": "algebra_with_sympy.version", "modulename": "algebra_with_sympy.version", "kind": "module", "doc": "\n"}}, "docInfo": {"algebra_with_sympy": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3534}, "algebra_with_sympy.proper_sympy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 4002}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 530}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 65}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 50}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 15}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 126}, "algebra_with_sympy.algebraic_equation.ip": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.formatter": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 133}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 102}, "algebra_with_sympy.algebraic_equation.Eqn": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.units": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 100}, "algebra_with_sympy.algebraic_equation.solve": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 834}, "algebra_with_sympy.algebraic_equation.solveset": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 38}, "algebra_with_sympy.algebraic_equation.Equality": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 17}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.Eq": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.abs": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 229}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 97}, "algebra_with_sympy.preparser.integers_as_exact": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "algebra_with_sympy.version": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 34, "save": true}, "index": {"qualname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.version": {"tf": 1}}, "df": 1}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 3, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}}, "df": 1}}}}, "x": {"2": {"7": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.units": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 3.1622776601683795}}, "df": 14, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "doc": {"root": {"0": {"0": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"0": {"6": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 7}, "1": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.47213595499958}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "2": {"0": {"2": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "/": {"3": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "/": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2}, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "3": {"9": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}}, "df": 4}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "5": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "9": {"3": {"3": {"4": {"3": {"2": {"5": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 31.448370387032774}, "algebra_with_sympy.proper_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 50.049975024968795}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 11}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 5.744562646538029}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 20.149441679609886}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 5.830951894845301}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 4.242640687119285}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 4.69041575982343}, "algebra_with_sympy.version": {"tf": 1.7320508075688772}}, "df": 34, "a": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "docs": {"algebra_with_sympy": {"tf": 6.164414002968976}, "algebra_with_sympy.algebraic_equation": {"tf": 7.483314773547883}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 12, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "d": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 7}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}}, "df": 1}, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "q": {"1": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}, "4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "5": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 8.366600265340756}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.605551275463989}}, "df": 11, "s": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 7}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 5.656854249492381}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 6.244997998398398}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 13, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 5, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "n": {"docs": {"algebra_with_sympy": {"tf": 7}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 13, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 4}, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 5.196152422706632}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 11, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 7, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.4641016151377544}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 7.211102550927978}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}}, "df": 13, "f": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "f": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 12, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.605551275463989}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 5.385164807134504}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3}}, "df": 12}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 14}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}, "e": {"docs": {"algebra_with_sympy": {"tf": 10.198039027185569}, "algebra_with_sympy.algebraic_equation": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.7416573867739413}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 18, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "m": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 8}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 6.708203932499369}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": null}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "\\": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 16.522711641858304}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 6.708203932499369}}, "df": 3}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}}, "df": 1, "y": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.47213595499958}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "r": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "#": {"2": {"1": {"3": {"3": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1, "p": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}, "*": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 6}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}}, "df": 3, "y": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}, "e": {"docs": {"algebra_with_sympy": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.6457513110645907}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 6}, "g": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "u": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 2}, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2.23606797749979}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "o": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}}, "*": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}, "k": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 4, "*": {"0": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "^": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "docs": {}, "df": 0}}, "q": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4.47213595499958}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
// mirrored in build-search-index.js (part 1)
// Also split on html tags. this is a cheap heuristic, but good enough.