From 32d171ed992d9aace595c5fe225ca0eceb0c0c30 Mon Sep 17 00:00:00 2001
From: gutow This tool defines relations that all high school and college students would
recognize as mathematical equations.
They consist of a left hand side (lhs) and a right hand side (rhs) connected by
@@ -168,10 +170,12 @@ Submodules
API Documentation
-
+
built with pdoc
Introduction
+
+
Convenience
Jupyter/IPython environments easier:
unset_integers_as_exact()
-and on with set_integers_as_exact()
. When on the flag
+2/3*x
, where x is a sympy symbol, ->
+2*x/3
not x*0.6666...
, but if x is just a plain Python object then 2/3*x
+-> x*0.66666...
). This can be turned off with unset_integers_as_exact()
,
+which leads to standard Python behavior (2/3*x
-> x*0.6666...
) even for
+Sympy expressions. Turn on with set_integers_as_exact()
. When on the flag
algwsym_config.numerics.integers_as_exact = True
.solve()
are wrapped in FiniteSet()
to force pretty-printing
of all of a solution set. See Controlling the Format of Interactive
@@ -183,16 +187,21 @@ Equation
class.In graphical environments (Jupyter) you will get rendered Latex such as +
algwsym_config.output.show_code = True
.
This will print the code version (e.g. Equation(a,b/c)
) of equations
and sympy expression in addition to the human readable version. This code
version can be accessed directly by calling repr()
on the
-equation or expression.In interactive text environments (IPython and command line) The human
readable string version of Sympy expressions are returned (for Equations
a
= b rather than Equation(a,b)). This is equivalent to Calling print()
@@ -225,6 +234,8 @@
pip install -U Algebra-with-SymPy
set_integers_as_exact()
, the default) now
+only sets integers as exact within Sympy and Algebra_with_Sympy
+expressions. This increases compatibility with other packages that
+depend on integers being Python integers.__version__
was handled could break pip install. Changed to
generating the internal version during setup. This means the version
-is now available as algwsym_version
.algwsym_version
.This program is free software: you can redistribute it and/or modify +
+This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. @@ -409,6 +436,8 @@
pip
install -U pdoc
.pipenv shell
@@ -480,6 +514,8 @@ Running Tests
Building PyPi package
+
+
- Make sure to update the version number in setup.py first.
- Install updated setuptools and twine in the virtual environment:
@@ -512,7 +548,8 @@
Building PyPi package
Releasing on PyPi
-Proceed only if testing of the build is successful.
+
+Proceed only if testing of the build is successful.
- Double check the version number in version.py.
@@ -533,46 +570,63 @@ Releasing on PyPi
3.. include:: ../Development Notes.md
4"""
5__docformat__ = "numpy"
- 6from algebra_with_sympy.algebraic_equation import *
- 7
- 8# Set up numerics behaviors
- 9try:
-10 from IPython import get_ipython
-11
-12 if get_ipython():
-13 get_ipython().input_transformers_post.append(integers_as_exact)
-14 algwsym_config.numerics.integers_as_exact = True
-15except ModuleNotFoundError:
-16 pass
-17
-18from algebra_with_sympy.preparser import *
-19
-20# Set the output formatting defaults
-21algwsym_config.output.show_code = False
-22algwsym_config.output.human_text = True
-23algwsym_config.output.label = True
-24algwsym_config.output.solve_to_list = False
-25algwsym_config.output.latex_as_equations = False
-26
-27# Set version number for internal access
-28algwsym_version = 'unknown'
-29try:
-30 from algebra_with_sympy.version import __version__ as algwsym_version
-31except FileNotFoundError as e:
-32 UserWarning('Could not read the version.py file. Your installation'
-33 ' of algebra_with_sympy probably did not work correctly.')
+ 6from warnings import warn
+ 7proper_sympy = True
+ 8try:
+ 9 from sympy.core.equation import Equation
+10except ImportError:
+11 proper_sympy = False
+12 warn('You need the extended version of Sympy to use Algebra_with_Sympy. '
+13 'Algebra_with_Sympy will not be loaded. You can use your current '
+14 'version of Sympy without the Algebra_with_Sympy features using '
+15 'the command `from sympy import *`. To get the extended version '
+16 'of sympy:\n'
+17 '1. uninstall your current version `pip uninstall sympy`.\n'
+18 '2. install extended sympy `pip install sympy-for-algebra`.\n'
+19 'NOTE: an update to extended sympy is usually issued soon after '
+20 'each 1.XX.1 release of standard sympy.')
+21
+22if proper_sympy:
+23 from algebra_with_sympy.algebraic_equation import *
+24
+25 # Set up numerics behaviors
+26 try:
+27 from IPython import get_ipython
+28
+29 if get_ipython():
+30 get_ipython().input_transformers_post.append(integers_as_exact)
+31 algwsym_config.numerics.integers_as_exact = True
+32 except ModuleNotFoundError:
+33 pass
+34
+35 from algebra_with_sympy.preparser import *
+36
+37 # Set the output formatting defaults
+38 algwsym_config.output.show_code = False
+39 algwsym_config.output.human_text = True
+40 algwsym_config.output.label = True
+41 algwsym_config.output.solve_to_list = False
+42 algwsym_config.output.latex_as_equations = False
+43
+44 # Set version number for internal access
+45 algwsym_version = 'unknown'
+46 try:
+47 from algebra_with_sympy.version import __version__ as algwsym_version
+48 except FileNotFoundError as e:
+49 UserWarning('Could not read the version.py file. Your installation'
+50 ' of algebra_with_sympy probably did not work correctly.')
- 492def set_integers_as_exact(): -493 """This operation uses `sympy.interactive.session.int_to_Integer`, which -494 causes any number input without a decimal to be interpreted as a sympy -495 integer, to pre-parse input cells. It also sets the flag -496 `algwsym_config.numerics.integers_as_exact = True` This is the default -497 mode of algebra_with_sympy. To turn this off call -498 `unset_integers_as_exact()`. -499 """ -500 ip = False -501 try: -502 from IPython import get_ipython -503 ip = True -504 except ModuleNotFoundError: -505 ip = False -506 if ip: -507 if get_ipython(): -508 get_ipython().input_transformers_post.append(integers_as_exact) -509 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) -510 if algwsym_config: -511 algwsym_config.numerics.integers_as_exact = True -512 else: -513 raise ValueError("The algwsym_config object does not exist.") -514 return +493 """This operation causes any number input without a decimal that is +494 part of a Sympy expression to be interpreted as a sympy +495 integer, by using a custom preparser to cast integers within Sympy +496 expressions as Sympy integers (`Integer()`). It also sets the flag +497 `algwsym_config.numerics.integers_as_exact = True` This is the default +498 mode of algebra_with_sympy. To turn this off call +499 `unset_integers_as_exact()`. +500 +501 NOTE: `2/3` --> `0.6666...` even when this is set, but `2*x/3` --> +502 `Integer(2)/Integer(3)*x` if x is a sympy object. If `x` is just a Python +503 object `2*x/3` --> `x*0.6666666666...`. +504 """ +505 ip = False +506 try: +507 from IPython import get_ipython +508 ip = True +509 except ModuleNotFoundError: +510 ip = False +511 if ip: +512 if get_ipython(): +513 get_ipython().input_transformers_post.append(integers_as_exact) +514 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) +515 if algwsym_config: +516 algwsym_config.numerics.integers_as_exact = True +517 else: +518 raise ValueError("The algwsym_config object does not exist.") +519 return
This operation uses sympy.interactive.session.int_to_Integer
, which
-causes any number input without a decimal to be interpreted as a sympy
-integer, to pre-parse input cells. It also sets the flag
+
This operation causes any number input without a decimal that is
+part of a Sympy expression to be interpreted as a sympy
+integer, by using a custom preparser to cast integers within Sympy
+expressions as Sympy integers (Integer()
). It also sets the flag
algwsym_config.numerics.integers_as_exact = True
This is the default
mode of algebra_with_sympy. To turn this off call
unset_integers_as_exact()
.
NOTE: 2/3
--> 0.6666...
even when this is set, but 2*x/3
-->
+Integer(2)/Integer(3)*x
if x is a sympy object. If x
is just a Python
+object 2*x/3
--> x*0.6666666666...
.
516def unset_integers_as_exact(): -517 """This operation disables forcing of numbers input without -518 decimals being interpreted as sympy integers. Numbers input without a -519 decimal may be interpreted as floating point if they are part of an -520 expression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It -521 also sets the flag `algwsym_config.numerics.integers_as_exact = False`. -522 Call `set_integers_as_exact()` to avoid this conversion of rational -523 fractions and related expressions to floating point. Algebra_with_sympy -524 starts with `set_integers_as_exact()` enabled ( -525 `algwsym_config.numerics.integers_as_exact = True`). -526 """ -527 ip = False -528 try: -529 from IPython import get_ipython -530 ip = True -531 except ModuleNotFoundError: -532 ip = False -533 if ip: -534 if get_ipython(): -535 pre = get_ipython().input_transformers_post -536 # The below looks excessively complicated, but more reliably finds the -537 # transformer to remove across varying IPython environments. -538 for k in pre: -539 if "integers_as_exact" in k.__name__: -540 pre.remove(k) -541 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) -542 if algwsym_config: -543 algwsym_config.numerics.integers_as_exact = False -544 else: -545 raise ValueError("The algwsym_config object does not exist.") -546 -547 return +@@ -2039,46 +2054,46 @@521def unset_integers_as_exact(): +522 """This operation disables forcing of numbers input without +523 decimals being interpreted as sympy integers. Numbers input without a +524 decimal may be interpreted as floating point if they are part of an +525 expression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It +526 also sets the flag `algwsym_config.numerics.integers_as_exact = False`. +527 Call `set_integers_as_exact()` to avoid this conversion of rational +528 fractions and related expressions to floating point. Algebra_with_sympy +529 starts with `set_integers_as_exact()` enabled ( +530 `algwsym_config.numerics.integers_as_exact = True`). +531 """ +532 ip = False +533 try: +534 from IPython import get_ipython +535 ip = True +536 except ModuleNotFoundError: +537 ip = False +538 if ip: +539 if get_ipython(): +540 pre = get_ipython().input_transformers_post +541 # The below looks excessively complicated, but more reliably finds the +542 # transformer to remove across varying IPython environments. +543 for k in pre: +544 if "integers_as_exact" in k.__name__: +545 pre.remove(k) +546 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) +547 if algwsym_config: +548 algwsym_config.numerics.integers_as_exact = False +549 else: +550 raise ValueError("The algwsym_config object does not exist.") +551 +552 returnPrinting
555def units(names): -556 """ -557 This operation declares the symbols to be positive values, so that sympy -558 will handle them properly when simplifying expressions containing units. -559 Units defined this way are just unit symbols. If you want units that are -560 aware of conversions see sympy.physics.units. -561 -562 -563 :param string names: a string containing a space separated list of -564 symbols to be treated as units. -565 -566 :return string list of defined units: calls `name = symbols(name, -567 positive=True)` in the interactive namespace for each symbol name. -568 """ -569 from sympy.core.symbol import symbols -570 #import __main__ as shell -571 user_namespace = None -572 try: -573 from IPython import get_ipython -574 if get_ipython(): -575 user_namespace = get_ipython().user_ns -576 except ModuleNotFoundError: -577 pass -578 syms = names.split(' ') -579 retstr = '' -580 -581 if user_namespace==None: -582 import sys -583 frame_num = 0 -584 frame_name = None -585 while frame_name != '__main__' and frame_num < 50: -586 user_namespace = sys._getframe(frame_num).f_globals -587 frame_num +=1 -588 frame_name = user_namespace['__name__'] -589 retstr +='(' -590 for k in syms: -591 user_namespace[k] = symbols(k, positive = True) -592 retstr += k + ',' -593 retstr = retstr[:-1] + ')' -594 return retstr +@@ -2115,119 +2130,119 @@560def units(names): +561 """ +562 This operation declares the symbols to be positive values, so that sympy +563 will handle them properly when simplifying expressions containing units. +564 Units defined this way are just unit symbols. If you want units that are +565 aware of conversions see sympy.physics.units. +566 +567 +568 :param string names: a string containing a space separated list of +569 symbols to be treated as units. +570 +571 :return string list of defined units: calls `name = symbols(name, +572 positive=True)` in the interactive namespace for each symbol name. +573 """ +574 from sympy.core.symbol import symbols +575 #import __main__ as shell +576 user_namespace = None +577 try: +578 from IPython import get_ipython +579 if get_ipython(): +580 user_namespace = get_ipython().user_ns +581 except ModuleNotFoundError: +582 pass +583 syms = names.split(' ') +584 retstr = '' +585 +586 if user_namespace==None: +587 import sys +588 frame_num = 0 +589 frame_name = None +590 while frame_name != '__main__' and frame_num < 50: +591 user_namespace = sys._getframe(frame_num).f_globals +592 frame_num +=1 +593 frame_name = user_namespace['__name__'] +594 retstr +='(' +595 for k in syms: +596 user_namespace[k] = symbols(k, positive = True) +597 retstr += k + ',' +598 retstr = retstr[:-1] + ')' +599 return retstrReturns
597def solve(f, *symbols, **flags): -598 """ -599 Override of sympy `solve()`. -600 -601 If passed an expression and variable(s) to solve for it behaves -602 almost the same as normal solve with `dict = True`, except that solutions -603 are wrapped in a FiniteSet() to guarantee that the output will be pretty -604 printed in Jupyter like environments. +@@ -2314,60 +2329,60 @@602def solve(f, *symbols, **flags): +603 """ +604 Override of sympy `solve()`. 605 -606 If passed an equation or equations it returns solutions as a -607 `FiniteSet()` of solutions, where each solution is represented by an -608 equation or set of equations. -609 -610 To get a Python `list` of solutions (pre-0.11.0 behavior) rather than a -611 `FiniteSet` issue the command `algwsym_config.output.solve_to_list = True`. -612 This also prevents pretty-printing in IPython and Jupyter. -613 -614 Examples -615 -------- -616 >>> a, b, c, x, y = symbols('a b c x y', real = True) -617 >>> import sys -618 >>> sys.displayhook = __command_line_printing__ # set by default on normal initialization. -619 >>> eq1 = Eqn(abs(2*x+y),3) -620 >>> eq2 = Eqn(abs(x + 2*y),3) -621 >>> B = solve((eq1,eq2)) -622 -623 Default human readable output on command line -624 >>> B -625 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} -626 -627 To get raw output turn off by setting -628 >>> algwsym_config.output.human_text=False +606 If passed an expression and variable(s) to solve for it behaves +607 almost the same as normal solve with `dict = True`, except that solutions +608 are wrapped in a FiniteSet() to guarantee that the output will be pretty +609 printed in Jupyter like environments. +610 +611 If passed an equation or equations it returns solutions as a +612 `FiniteSet()` of solutions, where each solution is represented by an +613 equation or set of equations. +614 +615 To get a Python `list` of solutions (pre-0.11.0 behavior) rather than a +616 `FiniteSet` issue the command `algwsym_config.output.solve_to_list = True`. +617 This also prevents pretty-printing in IPython and Jupyter. +618 +619 Examples +620 -------- +621 >>> a, b, c, x, y = symbols('a b c x y', real = True) +622 >>> import sys +623 >>> sys.displayhook = __command_line_printing__ # set by default on normal initialization. +624 >>> eq1 = Eqn(abs(2*x+y),3) +625 >>> eq2 = Eqn(abs(x + 2*y),3) +626 >>> B = solve((eq1,eq2)) +627 +628 Default human readable output on command line 629 >>> B -630 FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) +630 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} 631 -632 Pre-0.11.0 behavior where a python list of solutions is returned -633 >>> algwsym_config.output.solve_to_list = True -634 >>> solve((eq1,eq2)) -635 [[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]] -636 >>> algwsym_config.output.solve_to_list = False # reset to default -637 -638 `algwsym_config.output.human_text = True` with -639 `algwsym_config.output.how_code=True` shows both. -640 In Jupyter-like environments `show_code=True` yields the Raw output and -641 a typeset version. If `show_code=False` (the default) only the -642 typeset version is shown in Jupyter. -643 >>> algwsym_config.output.show_code=True -644 >>> algwsym_config.output.human_text=True -645 >>> B -646 Code version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) -647 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} -648 """ -649 from sympy.solvers.solvers import solve -650 from sympy.sets.sets import FiniteSet -651 newf =[] -652 solns = [] -653 displaysolns = [] -654 contains_eqn = False -655 if hasattr(f,'__iter__'): -656 for k in f: -657 if isinstance(k, Equation): -658 newf.append(k.lhs-k.rhs) -659 contains_eqn = True -660 else: -661 newf.append(k) -662 else: -663 if isinstance(f, Equation): -664 newf.append(f.lhs - f.rhs) -665 contains_eqn = True -666 else: -667 newf.append(f) -668 flags['dict'] = True -669 result = solve(newf, *symbols, **flags) -670 if len(symbols) == 1 and hasattr(symbols[0], "__iter__"): -671 symbols = symbols[0] -672 if contains_eqn: -673 if len(result[0]) == 1: -674 for k in result: -675 for key in k.keys(): -676 val = k[key] -677 tempeqn = Eqn(key, val) -678 solns.append(tempeqn) -679 if len(solns) == len(symbols): -680 # sort according to the user-provided symbols -681 solns = sorted(solns, key=lambda x: symbols.index(x.lhs)) -682 else: -683 for k in result: -684 solnset = [] -685 for key in k.keys(): -686 val = k[key] -687 tempeqn = Eqn(key, val) -688 solnset.append(tempeqn) -689 if not algwsym_config.output.solve_to_list: -690 solnset = FiniteSet(*solnset) -691 else: -692 if len(solnset) == len(symbols): -693 # sort according to the user-provided symbols -694 solnset = sorted(solnset, key=lambda x: symbols.index(x.lhs)) -695 solns.append(solnset) -696 else: -697 solns = result -698 if algwsym_config.output.solve_to_list: -699 if len(solns) == 1 and hasattr(solns[0], "__iter__"): -700 # no need to wrap a list of a single element inside another list -701 return solns[0] -702 return solns -703 else: -704 if len(solns) == 1: -705 # do not wrap a singleton in FiniteSet if it already is -706 for k in solns: -707 if isinstance(k, FiniteSet): -708 return k -709 return FiniteSet(*solns) +632 To get raw output turn off by setting +633 >>> algwsym_config.output.human_text=False +634 >>> B +635 FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) +636 +637 Pre-0.11.0 behavior where a python list of solutions is returned +638 >>> algwsym_config.output.solve_to_list = True +639 >>> solve((eq1,eq2)) +640 [[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]] +641 >>> algwsym_config.output.solve_to_list = False # reset to default +642 +643 `algwsym_config.output.human_text = True` with +644 `algwsym_config.output.how_code=True` shows both. +645 In Jupyter-like environments `show_code=True` yields the Raw output and +646 a typeset version. If `show_code=False` (the default) only the +647 typeset version is shown in Jupyter. +648 >>> algwsym_config.output.show_code=True +649 >>> algwsym_config.output.human_text=True +650 >>> B +651 Code version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) +652 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} +653 """ +654 from sympy.solvers.solvers import solve +655 from sympy.sets.sets import FiniteSet +656 newf =[] +657 solns = [] +658 displaysolns = [] +659 contains_eqn = False +660 if hasattr(f,'__iter__'): +661 for k in f: +662 if isinstance(k, Equation): +663 newf.append(k.lhs-k.rhs) +664 contains_eqn = True +665 else: +666 newf.append(k) +667 else: +668 if isinstance(f, Equation): +669 newf.append(f.lhs - f.rhs) +670 contains_eqn = True +671 else: +672 newf.append(f) +673 flags['dict'] = True +674 result = solve(newf, *symbols, **flags) +675 if len(symbols) == 1 and hasattr(symbols[0], "__iter__"): +676 symbols = symbols[0] +677 if contains_eqn: +678 if len(result[0]) == 1: +679 for k in result: +680 for key in k.keys(): +681 val = k[key] +682 tempeqn = Eqn(key, val) +683 solns.append(tempeqn) +684 if len(solns) == len(symbols): +685 # sort according to the user-provided symbols +686 solns = sorted(solns, key=lambda x: symbols.index(x.lhs)) +687 else: +688 for k in result: +689 solnset = [] +690 for key in k.keys(): +691 val = k[key] +692 tempeqn = Eqn(key, val) +693 solnset.append(tempeqn) +694 if not algwsym_config.output.solve_to_list: +695 solnset = FiniteSet(*solnset) +696 else: +697 if len(solnset) == len(symbols): +698 # sort according to the user-provided symbols +699 solnset = sorted(solnset, key=lambda x: symbols.index(x.lhs)) +700 solns.append(solnset) +701 else: +702 solns = result +703 if algwsym_config.output.solve_to_list: +704 if len(solns) == 1 and hasattr(solns[0], "__iter__"): +705 # no need to wrap a list of a single element inside another list +706 return solns[0] +707 return solns +708 else: +709 if len(solns) == 1: +710 # do not wrap a singleton in FiniteSet if it already is +711 for k in solns: +712 if isinstance(k, FiniteSet): +713 return k +714 return FiniteSet(*solns)Examples
711def solveset(f, symbols, domain=sympy.Complexes): -712 """ -713 Very experimental override of sympy solveset, which we hope will replace -714 solve. Much is not working. It is not clear how to input a system of -715 equations unless you directly select `linsolve`, etc... -716 """ -717 from sympy.solvers import solveset as solve -718 newf = [] -719 solns = [] -720 displaysolns = [] -721 contains_eqn = False -722 if hasattr(f, '__iter__'): -723 for k in f: -724 if isinstance(k, Equation): -725 newf.append(k.lhs - k.rhs) -726 contains_eqn = True -727 else: -728 newf.append(k) -729 else: -730 if isinstance(f, Equation): -731 newf.append(f.lhs - f.rhs) -732 contains_eqn = True -733 else: -734 newf.append(f) -735 result = solve(*newf, symbols, domain=domain) -736 # if contains_eqn: -737 # if len(result[0]) == 1: -738 # for k in result: -739 # for key in k.keys(): -740 # val = k[key] -741 # tempeqn = Eqn(key, val) -742 # solns.append(tempeqn) -743 # display(*solns) -744 # else: -745 # for k in result: -746 # solnset = [] -747 # displayset = [] -748 # for key in k.keys(): -749 # val = k[key] -750 # tempeqn = Eqn(key, val) -751 # solnset.append(tempeqn) -752 # if algwsym_config.output.show_solve_output: -753 # displayset.append(tempeqn) -754 # if algwsym_config.output.show_solve_output: -755 # displayset.append('-----') -756 # solns.append(solnset) -757 # if algwsym_config.output.show_solve_output: -758 # for k in displayset: -759 # displaysolns.append(k) -760 # if algwsym_config.output.show_solve_output: -761 # display(*displaysolns) -762 # else: -763 solns = result -764 return solns +@@ -2389,23 +2404,23 @@716def solveset(f, symbols, domain=sympy.Complexes): +717 """ +718 Very experimental override of sympy solveset, which we hope will replace +719 solve. Much is not working. It is not clear how to input a system of +720 equations unless you directly select `linsolve`, etc... +721 """ +722 from sympy.solvers import solveset as solve +723 newf = [] +724 solns = [] +725 displaysolns = [] +726 contains_eqn = False +727 if hasattr(f, '__iter__'): +728 for k in f: +729 if isinstance(k, Equation): +730 newf.append(k.lhs - k.rhs) +731 contains_eqn = True +732 else: +733 newf.append(k) +734 else: +735 if isinstance(f, Equation): +736 newf.append(f.lhs - f.rhs) +737 contains_eqn = True +738 else: +739 newf.append(f) +740 result = solve(*newf, symbols, domain=domain) +741 # if contains_eqn: +742 # if len(result[0]) == 1: +743 # for k in result: +744 # for key in k.keys(): +745 # val = k[key] +746 # tempeqn = Eqn(key, val) +747 # solns.append(tempeqn) +748 # display(*solns) +749 # else: +750 # for k in result: +751 # solnset = [] +752 # displayset = [] +753 # for key in k.keys(): +754 # val = k[key] +755 # tempeqn = Eqn(key, val) +756 # solnset.append(tempeqn) +757 # if algwsym_config.output.show_solve_output: +758 # displayset.append(tempeqn) +759 # if algwsym_config.output.show_solve_output: +760 # displayset.append('-----') +761 # solns.append(solnset) +762 # if algwsym_config.output.show_solve_output: +763 # for k in displayset: +764 # displaysolns.append(k) +765 # if algwsym_config.output.show_solve_output: +766 # display(*displaysolns) +767 # else: +768 solns = result +769 return solnsExamples
767class Equality(Equality): -768 """ -769 Extension of Equality class to include the ability to convert it to an -770 Equation. -771 """ -772 def to_Equation(self): -773 """ -774 Return: recasts the Equality as an Equation. -775 """ -776 return Equation(self.lhs,self.rhs) -777 -778 def to_Eqn(self): -779 """ -780 Synonym for to_Equation. -781 Return: recasts the Equality as an Equation. -782 """ -783 return self.to_Equation() +@@ -2425,11 +2440,11 @@772class Equality(Equality): +773 """ +774 Extension of Equality class to include the ability to convert it to an +775 Equation. +776 """ +777 def to_Equation(self): +778 """ +779 Return: recasts the Equality as an Equation. +780 """ +781 return Equation(self.lhs,self.rhs) +782 +783 def to_Eqn(self): +784 """ +785 Synonym for to_Equation. +786 Return: recasts the Equality as an Equation. +787 """ +788 return self.to_Equation()Examples
772 def to_Equation(self): -773 """ -774 Return: recasts the Equality as an Equation. -775 """ -776 return Equation(self.lhs,self.rhs) +@@ -2449,12 +2464,12 @@777 def to_Equation(self): +778 """ +779 Return: recasts the Equality as an Equation. +780 """ +781 return Equation(self.lhs,self.rhs)Examples
778 def to_Eqn(self): -779 """ -780 Synonym for to_Equation. -781 Return: recasts the Equality as an Equation. -782 """ -783 return self.to_Equation() +@@ -2576,32 +2591,32 @@783 def to_Eqn(self): +784 """ +785 Synonym for to_Equation. +786 Return: recasts the Equality as an Equation. +787 """ +788 return self.to_Equation()Inherited Members
- refine
- rewrite
- could_extract_minus_sign
-- is_nonpositive
-- is_integer
-- is_prime
-- is_polar
-- is_infinite
-- is_rational
-- is_transcendental
-- is_nonnegative
-- is_extended_nonzero
-- is_extended_negative
-- is_extended_positive
-- is_complex
+- is_composite
- is_imaginary
+- is_even
+- is_noninteger
+- is_algebraic
+- is_antihermitian
+- is_odd
+- is_complex
- is_hermitian
+- is_extended_nonnegative
- is_positive
-- is_composite
+- is_prime
- is_extended_nonpositive
-- is_antihermitian
+- is_extended_negative
+- is_nonpositive
+- is_irrational
- is_finite
-- is_even
+- is_polar
- is_nonzero
-- is_extended_nonnegative
-- is_noninteger
-- is_irrational
-- is_odd
-- is_algebraic
+- is_integer
+- is_extended_nonzero
+- is_extended_positive
+- is_transcendental
+- is_nonnegative
+- is_rational
+- is_infinite
1def algebra_with_sympy_preparser(lines): - 2 """ - 3 In IPython compatible environments (Jupyter, IPython, etc...) this supports - 4 a special compact input method for equations. - 5 - 6 The syntax supported is `equation_name =@ equation.lhs = equation.rhs`, - 7 where `equation_name` is a valid Python name that can be used to refer to - 8 the equation later. `equation.lhs` is the left-hand side of the equation - 9 and `equation.rhs` is the right-hand side of the equation. Each side of the -10 equation must parse into a valid Sympy expression. -11 -12 **Note**: This does not support line continuation. Long equations should be -13 built by combining expressions using names short enough to do this on one -14 line. The alternative is to use `equation_name = Eqn(long ... -15 expressions ... with ... multiple ... lines)`. -16 -17 **Note**: If the `equation_name` is omitted the equation will be formed, -18 but it will not be assigned to a name that can be used to refer to it -19 later. You may be able to access it through one of the special IPython -20 underscore names. This is not recommended. -21 -22 **THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT -23 BEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED -24 DIRECTLY BY A USER** -25 """ -26 new_lines = [] -27 if isinstance(lines,str): -28 lines = [lines] -29 for k in lines: -30 if '=@' in k: -31 drop_comments = k.split('#') -32 to_rephrase = '' -33 if len(drop_comments) > 2: -34 for i in range(len(drop_comments)-1): -35 to_rephrase += drop_comments[i] -36 else: -37 to_rephrase = drop_comments[0] -38 linesplit = to_rephrase.split('=@') -39 eqsplit = linesplit[1].split('=') -40 if len(eqsplit)!=2: -41 raise ValueError('The two sides of the equation must be' \ -42 ' separated by an \"=\" sign when using' \ -43 ' the \"=@\" special input method.') -44 templine ='' -45 if eqsplit[0]!='' and eqsplit[1]!='': -46 if eqsplit[1].endswith('\n'): -47 eqsplit[1] = eqsplit[1][:-1] -48 if linesplit[0]!='': -49 templine = str(linesplit[0])+'= Eqn('+str(eqsplit[0])+',' \ -50 ''+str(eqsplit[1])+')\n' -51 else: -52 templine = 'Eqn('+str(eqsplit[0])+','+str(eqsplit[1])+')\n' -53 new_lines.append(templine) -54 else: -55 new_lines.append(k) -56 return new_lines -57 -58 -59def integers_as_exact(lines): -60 """This preparser uses `sympy.interactive.session.int_to_Integer` to -61 convert numbers without decimal points into sympy integers so that math -62 on them will be exact rather than defaulting to floating point. **This -63 should not be called directly by the user. It is plugged into the -64 IPython preparsing sequence when the feature is requested.** The default for -65 Algebra_with_sympy is to use this preparser. This can be turned on and -66 off using the Algebra_with_sympy functions: -67 * `set_integers_as_exact()` -68 * `unset_integers_as_exact()` -69 NOTE: This option does not work in plain vanilla Python sessions. You -70 must be running in an IPython environment (Jupyter, Notebook, Colab, -71 etc...). -72 """ -73 from sympy.interactive.session import int_to_Integer -74 string = '' -75 for k in lines: -76 string += k + '\n' -77 string = string[:-1] # remove the last '\n' -78 return int_to_Integer(string) -79try: -80 from IPython import get_ipython -81 if get_ipython(): -82 if hasattr(get_ipython(),'input_transformers_cleanup'): -83 get_ipython().input_transformers_post.\ -84 append(algebra_with_sympy_preparser) -85 else: -86 import warnings -87 warnings.warn('Compact equation input unavailable.\nYou will have ' \ -88 'to use the form "eq1 = Eqn(lhs,rhs)" instead of ' \ -89 '"eq1=@lhs=rhs".\nIt appears you are running an ' \ -90 'outdated version of IPython.\nTo fix, update IPython ' \ -91 'using "pip install -U IPython".') -92except ModuleNotFoundError: -93 pass +@@ -273,6 +382,135 @@1def algebra_with_sympy_preparser(lines): + 2 """ + 3 In IPython compatible environments (Jupyter, IPython, etc...) this supports + 4 a special compact input method for equations. + 5 + 6 The syntax supported is `equation_name =@ equation.lhs = equation.rhs`, + 7 where `equation_name` is a valid Python name that can be used to refer to + 8 the equation later. `equation.lhs` is the left-hand side of the equation + 9 and `equation.rhs` is the right-hand side of the equation. Each side of the + 10 equation must parse into a valid Sympy expression. + 11 + 12 **Note**: This does not support line continuation. Long equations should be + 13 built by combining expressions using names short enough to do this on one + 14 line. The alternative is to use `equation_name = Eqn(long ... + 15 expressions ... with ... multiple ... lines)`. + 16 + 17 **Note**: If the `equation_name` is omitted the equation will be formed, + 18 but it will not be assigned to a name that can be used to refer to it + 19 later. You may be able to access it through one of the special IPython + 20 underscore names. This is not recommended. + 21 + 22 **THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT + 23 BEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED + 24 DIRECTLY BY A USER** + 25 """ + 26 new_lines = [] + 27 if isinstance(lines,str): + 28 lines = [lines] + 29 for k in lines: + 30 if '=@' in k: + 31 drop_comments = k.split('#') + 32 to_rephrase = '' + 33 if len(drop_comments) > 2: + 34 for i in range(len(drop_comments)-1): + 35 to_rephrase += drop_comments[i] + 36 else: + 37 to_rephrase = drop_comments[0] + 38 linesplit = to_rephrase.split('=@') + 39 eqsplit = linesplit[1].split('=') + 40 if len(eqsplit)!=2: + 41 raise ValueError('The two sides of the equation must be' \ + 42 ' separated by an \"=\" sign when using' \ + 43 ' the \"=@\" special input method.') + 44 templine ='' + 45 if eqsplit[0]!='' and eqsplit[1]!='': + 46 if eqsplit[1].endswith('\n'): + 47 eqsplit[1] = eqsplit[1][:-1] + 48 if linesplit[0]!='': + 49 templine = str(linesplit[0])+'= Eqn('+str(eqsplit[0])+',' \ + 50 ''+str(eqsplit[1])+')\n' + 51 else: + 52 templine = 'Eqn('+str(eqsplit[0])+','+str(eqsplit[1])+')\n' + 53 new_lines.append(templine) + 54 else: + 55 new_lines.append(k) + 56 return new_lines + 57 + 58 + 59def toIntegerInSympyExpr(string): + 60 """ This function takes a string of valid Python and wraps integers within Sympy expressions + 61 in `sympy.Integer()` to make them Sympy integers rather than Python `Int()`. The + 62 advantage of this is that calculations with `Integer()` types can be exact. This function + 63 is careful not to wrap `Int()` types that are not part of Sympy expressions, making it + 64 possible for this functionality to exist with operations (e.g. array and numpy indexing) + 65 that are not compatible with the `Integer()` type. + 66 """ + 67 from tokenize import generate_tokens, NEWLINE, OP, untokenize + 68 from io import StringIO + 69 ### + 70 # Internally used functions + 71 ### + 72 def isSympy(tokens, newSymObj): + 73 """ Checks list of tokens to see if it contains a Sympy Object + 74 + 75 Parameters + 76 ========== + 77 tokens:list of tokens. + 78 newSymObj:list of string names of Sympy objects that have been declared + 79 in the current script/string being parsed. + 80 """ + 81 from sympy import Basic + 82 from tokenize import NAME + 83 import __main__ as user_ns + 84 # print(dir(user_ns)) + 85 sympy_obj = False + 86 for kind, string, start, end, line in tokens: + 87 if kind == NAME: + 88 # print('Checking: '+str(string)) + 89 if hasattr(user_ns, string): + 90 if isinstance(getattr(user_ns, string), Basic): + 91 sympy_obj = True + 92 if string in newSymObj: + 93 sympy_obj = True + 94 return sympy_obj + 95 + 96 def toSympInteger(tokens): + 97 from tokenize import NUMBER, OP, NAME + 98 result = [] + 99 for k in tokens: +100 if k[0] != NUMBER: +101 result.append((k[0], k[1])) +102 else: +103 if '.' in k[1] or 'j' in k[1].lower() or 'e' in k[1].lower(): +104 result.append((k[0], k[1])) +105 else: +106 result.extend([ +107 (NAME, 'Integer'), +108 (OP, '('), +109 (NUMBER, k[1]), +110 (OP, ')') +111 ]) +112 return result +113 +114 def checkforSymObjDecl(token): +115 import re +116 from tokenize import NAME +117 syms = [] +118 for kind, string, start, end, line in token: +119 if kind == NAME: +120 if string == 'var': +121 match = re.search(r'\".*?\"|\'.*?\'', line) +122 syms = match.group().replace('\"', '').replace('\'', +123 '').split( +124 ' ') +125 if string == 'units': +126 match = re.search(r'\".*?\"|\'.*?\'', line) +127 syms = match.group().replace('\"', '').replace('\'', +128 '').split( +129 ' ') +130 if string == 'symbols': +131 parts = line.split('=') +132 syms = parts[0].replace(' ', '').split(',') +133 if string == 'Symbol': +134 parts = line.split('=') +135 syms = parts[0].replace(' ', '').split(',') +136 return syms +137 +138 ### +139 # The parsing and substitution. +140 ### +141 g = generate_tokens(StringIO(string).readline) +142 declaredSymObj = [] +143 result = [] +144 temptokens = [] +145 openleft = 0 +146 for k in g: +147 declaredSymObj.extend(checkforSymObjDecl([k])) +148 temptokens.append(k) +149 if k[0] == OP and k[1] == '(': +150 openleft += 1 +151 if k[0] == OP and k[1] == ')': +152 openleft -= 1 +153 if k[0] == NEWLINE and openleft == 0: +154 # This is where we check for sympy objects and replace int() with Integer() +155 hasSympyObj = isSympy(temptokens, declaredSymObj) +156 if hasSympyObj: +157 converted = toSympInteger(temptokens) +158 result.extend(converted) +159 else: +160 for j in temptokens: +161 result.append((j[0],j[1])) +162 temptokens = [] +163 return untokenize(result) +164 +165def integers_as_exact(lines): +166 """This preparser uses `sympy.interactive.session.int_to_Integer` to +167 convert numbers without decimal points into sympy integers so that math +168 on them will be exact rather than defaulting to floating point. **This +169 should not be called directly by the user. It is plugged into the +170 IPython preparsing sequence when the feature is requested.** The default for +171 Algebra_with_sympy is to use this preparser. This can be turned on and +172 off using the Algebra_with_sympy functions: +173 * `set_integers_as_exact()` +174 * `unset_integers_as_exact()` +175 NOTE: This option does not work in plain vanilla Python sessions. You +176 must be running in an IPython environment (Jupyter, Notebook, Colab, +177 etc...). +178 """ +179 #from sympy.interactive.session import int_to_Integer +180 string = '' +181 for k in lines: +182 string += k + '\n' +183 string = string[:-1] # remove the last '\n' +184 return toIntegerInSympyExpr(string) +185try: +186 from IPython import get_ipython +187 if get_ipython(): +188 if hasattr(get_ipython(),'input_transformers_cleanup'): +189 get_ipython().input_transformers_post.\ +190 append(algebra_with_sympy_preparser) +191 else: +192 import warnings +193 warnings.warn('Compact equation input unavailable.\nYou will have ' \ +194 'to use the form "eq1 = Eqn(lhs,rhs)" instead of ' \ +195 '"eq1=@lhs=rhs".\nIt appears you are running an ' \ +196 'outdated version of IPython.\nTo fix, update IPython ' \ +197 'using "pip install -U IPython".') +198except ModuleNotFoundError: +199 pass
60def toIntegerInSympyExpr(string): + 61 """ This function takes a string of valid Python and wraps integers within Sympy expressions + 62 in `sympy.Integer()` to make them Sympy integers rather than Python `Int()`. The + 63 advantage of this is that calculations with `Integer()` types can be exact. This function + 64 is careful not to wrap `Int()` types that are not part of Sympy expressions, making it + 65 possible for this functionality to exist with operations (e.g. array and numpy indexing) + 66 that are not compatible with the `Integer()` type. + 67 """ + 68 from tokenize import generate_tokens, NEWLINE, OP, untokenize + 69 from io import StringIO + 70 ### + 71 # Internally used functions + 72 ### + 73 def isSympy(tokens, newSymObj): + 74 """ Checks list of tokens to see if it contains a Sympy Object + 75 + 76 Parameters + 77 ========== + 78 tokens:list of tokens. + 79 newSymObj:list of string names of Sympy objects that have been declared + 80 in the current script/string being parsed. + 81 """ + 82 from sympy import Basic + 83 from tokenize import NAME + 84 import __main__ as user_ns + 85 # print(dir(user_ns)) + 86 sympy_obj = False + 87 for kind, string, start, end, line in tokens: + 88 if kind == NAME: + 89 # print('Checking: '+str(string)) + 90 if hasattr(user_ns, string): + 91 if isinstance(getattr(user_ns, string), Basic): + 92 sympy_obj = True + 93 if string in newSymObj: + 94 sympy_obj = True + 95 return sympy_obj + 96 + 97 def toSympInteger(tokens): + 98 from tokenize import NUMBER, OP, NAME + 99 result = [] +100 for k in tokens: +101 if k[0] != NUMBER: +102 result.append((k[0], k[1])) +103 else: +104 if '.' in k[1] or 'j' in k[1].lower() or 'e' in k[1].lower(): +105 result.append((k[0], k[1])) +106 else: +107 result.extend([ +108 (NAME, 'Integer'), +109 (OP, '('), +110 (NUMBER, k[1]), +111 (OP, ')') +112 ]) +113 return result +114 +115 def checkforSymObjDecl(token): +116 import re +117 from tokenize import NAME +118 syms = [] +119 for kind, string, start, end, line in token: +120 if kind == NAME: +121 if string == 'var': +122 match = re.search(r'\".*?\"|\'.*?\'', line) +123 syms = match.group().replace('\"', '').replace('\'', +124 '').split( +125 ' ') +126 if string == 'units': +127 match = re.search(r'\".*?\"|\'.*?\'', line) +128 syms = match.group().replace('\"', '').replace('\'', +129 '').split( +130 ' ') +131 if string == 'symbols': +132 parts = line.split('=') +133 syms = parts[0].replace(' ', '').split(',') +134 if string == 'Symbol': +135 parts = line.split('=') +136 syms = parts[0].replace(' ', '').split(',') +137 return syms +138 +139 ### +140 # The parsing and substitution. +141 ### +142 g = generate_tokens(StringIO(string).readline) +143 declaredSymObj = [] +144 result = [] +145 temptokens = [] +146 openleft = 0 +147 for k in g: +148 declaredSymObj.extend(checkforSymObjDecl([k])) +149 temptokens.append(k) +150 if k[0] == OP and k[1] == '(': +151 openleft += 1 +152 if k[0] == OP and k[1] == ')': +153 openleft -= 1 +154 if k[0] == NEWLINE and openleft == 0: +155 # This is where we check for sympy objects and replace int() with Integer() +156 hasSympyObj = isSympy(temptokens, declaredSymObj) +157 if hasSympyObj: +158 converted = toSympInteger(temptokens) +159 result.extend(converted) +160 else: +161 for j in temptokens: +162 result.append((j[0],j[1])) +163 temptokens = [] +164 return untokenize(result) +
This function takes a string of valid Python and wraps integers within Sympy expressions
+in sympy.Integer()
to make them Sympy integers rather than Python Int()
. The
+advantage of this is that calculations with Integer()
types can be exact. This function
+is careful not to wrap Int()
types that are not part of Sympy expressions, making it
+possible for this functionality to exist with operations (e.g. array and numpy indexing)
+that are not compatible with the Integer()
type.
60def integers_as_exact(lines): -61 """This preparser uses `sympy.interactive.session.int_to_Integer` to -62 convert numbers without decimal points into sympy integers so that math -63 on them will be exact rather than defaulting to floating point. **This -64 should not be called directly by the user. It is plugged into the -65 IPython preparsing sequence when the feature is requested.** The default for -66 Algebra_with_sympy is to use this preparser. This can be turned on and -67 off using the Algebra_with_sympy functions: -68 * `set_integers_as_exact()` -69 * `unset_integers_as_exact()` -70 NOTE: This option does not work in plain vanilla Python sessions. You -71 must be running in an IPython environment (Jupyter, Notebook, Colab, -72 etc...). -73 """ -74 from sympy.interactive.session import int_to_Integer -75 string = '' -76 for k in lines: -77 string += k + '\n' -78 string = string[:-1] # remove the last '\n' -79 return int_to_Integer(string) +diff --git a/docs/algebra_with_sympy/version.html b/docs/algebra_with_sympy/version.html index c6e95de..d7eaee4 100644 --- a/docs/algebra_with_sympy/version.html +++ b/docs/algebra_with_sympy/version.html @@ -56,7 +56,7 @@166def integers_as_exact(lines): +167 """This preparser uses `sympy.interactive.session.int_to_Integer` to +168 convert numbers without decimal points into sympy integers so that math +169 on them will be exact rather than defaulting to floating point. **This +170 should not be called directly by the user. It is plugged into the +171 IPython preparsing sequence when the feature is requested.** The default for +172 Algebra_with_sympy is to use this preparser. This can be turned on and +173 off using the Algebra_with_sympy functions: +174 * `set_integers_as_exact()` +175 * `unset_integers_as_exact()` +176 NOTE: This option does not work in plain vanilla Python sessions. You +177 must be running in an IPython environment (Jupyter, Notebook, Colab, +178 etc...). +179 """ +180 #from sympy.interactive.session import int_to_Integer +181 string = '' +182 for k in lines: +183 string += k + '\n' +184 string = string[:-1] # remove the last '\n' +185 return toIntegerInSympyExpr(string)API Documentation
- + built with pdoc -1__version__ = "1.0.2" +
diff --git a/docs/search.js b/docs/search.js index cac7f26..c962c0e 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u1__version__ = "1.1.0rc1"
0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e 1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o Algebraic Equations with SymPy\n\n Introduction | Output Formatting\n| Installation |\nTry Live | Issues or Comments |\nChange Log |\nLicense\n| GIT Repository\n| PyPi Link
\n\nWebsite/Documentation (including API)
\n\nIntroduction
\n\nThis tool defines relations that all high school and college students would\nrecognize as mathematical equations. \nThey consist of a left hand side (lhs) and a right hand side (rhs) connected by\nthe relation operator \"=\". In addition, it sets some convenient defaults and \nprovides some controls of output formatting that may be useful even if\nyou do not use the
\n\nEquation
class (see Conveniences for\nSymPy).This tool applies operations to both sides of the equation simultaneously, just\nas students are taught to do when \nattempting to isolate (solve for) a variable. Thus the statement
\n\nEquation/b
\nyields a new equationEquation.lhs/b = Equation.rhs/b
The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra\nin a stepwise fashion using as close to standard mathematical notation as \npossible. In this way more people can successfully perform \nalgebraic rearrangements without stumbling\nover missed details such as a negative sign.
\n\nA simple example as it would appear in a Jupyter \nnotebook is shown immediately below:
\n\n\n\nThe last cell illustrates how it is possible to substitute numbers with \nunits into the solved equation to calculate a numerical solution with \nproper units. The
\n\nunits(...)
operation is part this package, not Sympy.In IPython environments (IPython, Jupyter, Google Colab, etc...) there is \nalso a shorthand syntax for entering equations provided through the IPython \npreparser. An equation can be specified as
\n\n\n\neq1 =@ a/b = c/d
.If no Python name is \nspecified for the equation (no
\n\neq_name
to the left of=@
), the equation \nwill still be defined, but will not be easily accessible for further \ncomputation. The=@
symbol combination was chosen to avoid conflicts with \nreserved python symbols while minimizing impacts on syntax highlighting \nand autoformatting.More examples of the capabilities of Algebra with Sympy are \nhere.
\n\nMany math packages such as SageMath \nand Maxima have similar capabilities, \nbut require more knowledge of command syntax, plus they cannot easily be \ninstalled in a generic python environment.
\n\nConvenience Tools and Defaults for Interactive Use of SymPy
\n\nEven if you do not use the
\n\nEquation
class, there are some convenience \ntools and defaults that will probably make interactive use of SymPy in \nJupyter/IPython environments easier:\n
\n\n- By default all numbers without decimal points are interpreted as integers. \nOne implication of this is that base ten fractions are exact (e.g. 2/3 -> \n2/3 not 0.6666...). This can be turned off with
\nunset_integers_as_exact()
\nand on withset_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
.- Results of
\nsolve()
are wrapped inFiniteSet()
to force pretty-printing \nof all of a solution set. See Controlling the Format of Interactive \nOutputs.- It is possible to set the default display to show both the pretty-printed \nresult and the code version simultaneously. See Controlling the Format of Interactive \nOutputs.
\nControlling the Format of Interactive Outputs
\n\n\n
\n\n- These controls impact all Sympy objects and the
\nEquation
class.- \n
In graphical environments (Jupyter) you will get rendered Latex such as \n$\\frac{a}{b} = \\frac{c}{d}$ or $e^{\\frac{-x^2}{\\sigma^2}}$. To also see the \ncode representation (what can be copied and pasted for \nadditional computation) set
algwsym_config.output.show_code = True
. \nThis will print the code version (e.g.Equation(a,b/c)
) of equations \nand sympy expression in addition to the human readable version. This code \nversion can be accessed directly by callingrepr()
on the \nequation or expression.- \n
In interactive text environments (IPython and command line) The human \nreadable string version of Sympy expressions are returned (for
\n\nEquations
a \n= b rather than Equation(a,b)). This is equivalent to Callingprint()
\norstr()
on an expression.\n
- To have the code version (can be copied and pasted as a \nPython statement) returned, set
\nalgwsym_config.output.human_text = False
.- Setting both
\nalgwsym_config.output.human_text = True
\nandalgwsym_config.output.show_code = True
, will return both the \ncode and human readable versions.- \n
The equation label can be turned off by setting\n
algwsym_config.output.label = False
.- \n
Automatic wrapping of
Equations
as Latex equations can be activated \nby settingalgwsym_config.output.latex_as_equations
toTrue
. The \ndefault isFalse
. Setting this toTrue
wraps output as LaTex equations,\nwrapping them in\\begin{equation}...\\end{equation}
. Equations formatted \nthis way will not be labeled with the internal name for the equation, \nindependent of the setting ofalgwsym_config.output.label
.- \n
By default solutions output by
solve()
are returned as a SymPy \nFiniteSet()
to force typesetting of the included solutions. To get Python \nlists instead you can override this for the whole session by setting\nalgwsym_config.output.solve_to_list = True
. For a one-off, simply \nwrap the output of a solve inlist()
(e.g.list(solve(...))
). One \nadvantage of list mode is that lists can be ordered. When\nalgwsym_config.output.solve_to_list = True
solve()
maintains the \nsolutions in the order the solve for variables were input.Setup/Installation
\n\n\n
\n\n- Use pip to install in your python environment: \n
\npip install -U Algebra-with-SymPy
- To use in a running python session issue\nthe following command :
\nfrom algebra_with_sympy import *
. \nThis will also import the SymPy tools.- If you want to isolate this tool from the global namespace you are \nworking with change the import statement \nto
\nimport algebra_with_sympy as spa
, where \nspa
stands for \"SymPy Algebra\". Then all calls would be made to\nspa.funcname()
. WARNING: Doing this makes shorthand equation input and \ncontrol of interactive output formats unavailable. To recover this \nfunctionality the following code must be run in the interactive session.\n\nEquation = spa.Equation\nEqn = Equation\nalgwsym_config = spa.algwsym_config\n
Try in binder
\n\n\n\nIssues or Comments
\n\n\n
\n\n- Issues and bug reports should be filed on \ngithub.
\n- Comments, questions, show and tell, etc. should go in the project \ndiscussions.
\nChange Log
\n\n\n
\n\n- 1.0.2 (July 5, 2024)\n
\n\n
- Removed requirements for Jupyter and Jupyterlab as code will work in \nvanilla python or Google Colab.
\n- Workaround for Google Colab's inconsistent handling of mixed Latex and \nplain text strings. This impacted display of equation labels in Colab.
\n- BUG FIX: catch IPython not installed so that can run in plain vanilla \npython.
\n- 1.0.1 (May 22, 2024)\n
\n\n
- BUG FIX: equation labels that include underscore characters \"_\" are now \naccepted.
\n- BUG FIX: wrapping equations formatted as LaTex equation (ie. surrounded \nby
\n\\begin{equation}...\\end{equation}
) in the$..$
code used to \nindicate markdown for MathJax was causing output errors in Quarto when \noutputing to .tex or .pdf. This is now fixed without negatively \nimpacting MathJax rendering.- BUG FIX: Singleton results of solve unnecessarily wrapped by extra list \nor finiteset. No longer double nested.
\n- BUG FIX: When returning lists make solve respect user order of solutions.
\n- BUG FIX: Equation output threw error when Algebra_with_Sympy was \nimported as a submodule. Equation labeling turned off for this type of \nimport to avoid error.
\n- BUG FIX: Equation labels are now copyable even with the newer MathJax \ncommonHTML rendering.
\n- Updates to requirements.txt.
\n- Documentation updates.
\n- 1.0.0 (January 2, 2024)\n
\n\n
- Added convenience operation
\nunits(...)
which takes a string of space \nseparated symbols to use as units. This simply declares the symbols \nto be positive, making them behave as units. This does not create units \nthat know about conversions, prefixes or systems of units. This lack \nis on purpose to provide units that require the user to worry about \nconversions (ideal in a teaching situation). To get units with built-in \nconversions seesympy.physics.units
.- Fixed issue #23 where
\ncos()
multiplied by a factor was not the same \ntype of object aftersimplify()
acted on an expression. Required \nembedding theEquation
type in the sympy library. UntilEquation
is \nincorporated into the primary Sympy repository a customized version of \nthe latest stable release will be used.- Fixed issue where trailing comments (ie.
\n# a comment
at the end of a \nline) lead to input errors using compact=@
notation.- \n
algwsym_config.output.latex_as_equations
has a default value ofFalse
.\n Setting this toTrue
wraps output as LaTex equations wrapping them \nin\\begin{equation}...\\end{equation}
. Equations formatted this way \nwill not be labeled with the internal name for the equation.- 0.12.0 (July 12, 2023)\n
\n\n
- Now defaults to interpreting numbers without decimal points as integers. \nThis can be turned off with
\nunset_integers_as_exact()
and on with\nset_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
.- 0.11.0 (June 5, 2023)\n
\n\n
- Formatting of
\nFiniteSets
overridden so that the contents always\npretty-print. This removes the necessity of special flags to get \npretty output fromsolve
.- Sympy
\nsolve()
now works reliably with equations and outputs \npretty-printed solutions.- Added option
\nalgwsym_config.output.solve_to_list = True
which causes \nsolve()
to return solutions sets as Python lists. Using this option \nprevents pretty-printing of the solutions produced bysolve()
.- \n
algwsym_config.output.show_code
and \nalgwsym_config.output.human_text
now work for all sympy objects, not \njustEquation
objects. This works\nin terminal, IPython terminal and Jupyter. This is achieved by hooking \ninto the pythondisplay_hook
and IPythondisplay_formatter
.- Added jupyter to requirements.txt so that virtual environment builds\nwill include jupyter.
\n- The way
\n__version__
was handled could break pip install. Changed to\ngenerating the internal version during setup. This means the version\nis now available asalgwsym_version
.- 0.10.0 (Sep. 5, 2022)\n
\n\n
- Documentation updates and fixes.
\n- Significantly increased test coverage (~98%).
\n- Support for
\nEqn.rewrite(Add)
- Solving (e.g.
\nsolve(Eqn,x)
) now supported fully. Still experimental.- Bug fix: latex printing now supports custom printer.
\n- Substitution into an Equation using Equations is now \nsupported (e.g.
\neq1.subs(eq2, eq3, ...)
).- \n
algebra_with_sympy.__version__
is now available for version checking \nwithin python.- Bug fix: preparsing for
\n=@
syntax no longer blocksobj?
syntax for \ngetting docstrings in ipython.- More robust determination of equation names for labeling.
\n- 0.9.4 (Aug. 11, 2022)\n
\n\n
- Update to deal with new Sympy function
\npiecewise_exclusive
in v1.11.- Added user warning if a function does not extend for use with
\nEquations
\nas expected. This also allows the package to be used even when a function \nextension does fail.- Simplification of documentation preparation.
\n- Typo fixes in preparser error messages.
\n- 0.9.3 (Aug. 9, 2022)\n
\n\n
- Added check for new enough version of IPython to use the preparser.
\n- If IPython version too old, issue warning and do not accept
\n=@
shorthand.- 0.9.2 (Jun. 5, 2022)\n
\n\n
- \n
=@
shorthand syntax for defining equations in IPython compatible \nenvironments.- Fixed bug where
\nroot()
override calledsqrt()
on bare expressions.- 0.9.1 (Mar. 24, 2022)\n
\n\n
- Equations labeled with their python name, if they have one.
\n- Added flags to adjust human readable output and equation labeling.
\n- Accept equation as function argument in any position.
\n- First pass at
\nsolve()
accepting equations.- Added override of
\nroot()
to avoid warning messages.- More unit tests.
\n- First pass at documentation.
\n- 0.9.0 functionality equivalent to extension of SymPy in\nPR#21333.
\nlicensed under GNU V3 license
\n\nThis program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.
\n\nCopyright - Algebra with Sympy Contributors 2021, 2022, 2023, 2024
\n\nDevelopment Notes
\n\nGeneral | Make Docs | \nRunning Tests | \nBuild PyPi Package|
\n\nGeneral Notes
\n\n\n
\n\n- TODOs\n
\n\n
- Test collect when there isn't an available _eval_collect (not sure how \nto get there).
\n- Test for _binary_op NotImplemented error (not sure how to get there).
\n- To consider\n
\n\n
- Include Sympy Plot Backends\nin the default setup.
\n- Change
\nEquation
constructor to acceptEquality
,Set
,List
or \nlhs, rhs
, rather than justlhs, rhs
.- Extend
\n.subs
to accept.subs(a=2*c, b = sin(q), ...)
.- MathLive on another web page as possible\ninput engine.
\nConstructing the Documentation
\n\n\n
\n\n- Make sure pdoc is installed and updated in the virtual environment
\npip \ninstall -U pdoc
.- Update any
\n.md
files included in_init_.py
.\n\n
- Generally URLs should be absolute, not relative.
\n- At the root level run pdoc \n
\n\npdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg \n--logo-link https://gutow.github.io/Algebra_with_Sympy/\n--footer-text \"Algebra with Sympy vX.X.X\" --math -html -o docs \n./algebra_with_sympy\n
\nwhereX.X.X
is the version number.Tasks for Documentation
\n\n\n
\n\n- Readme.md & Development Notes.md\n
\n\n
- Hard code anchors so that navigation links work on pypi page.
\n- Use absolute path to github pages for more examples.
\nRunning Tests
\n\n\n
\n\n- Install updated pytest in the virtual environment:\n
\npipenv shell\npip install -U pytest\n
- Run standard tests:\n
\npytest --ignore='Developer Testing' --ignore-glob='*test_preparser.py'
.- Run preparser tests:\n
\nipython -m pytest tests/test_preparser.py
- Run doctests:\n
\npytest --ignore='tests' --ignore='Developer Testing' \n--ignore-glob='*old*' --doctest-modules
You can run all the tests using the dotests script:
\n\n./dotests.sh
.NOTE: Some warnings about invalid escape characters are expected because \nraw strings are being passed with specialized LaTex escaped characters.
\n\nBuilding PyPi package
\n\n\n
\n\n- Make sure to update the version number in setup.py first.
\n- Install updated setuptools and twine in the virtual environment:\n
\npipenv shell\npip install -U setuptools wheel twine\n
- Build the distribution
\npython -m setup sdist bdist_wheel
.- Test it on
\ntest.pypi.org
.\n\n
- Upload it (you will need an account on test.pypi.org):\n
\npython -m twine upload --repository testpypi dist/*
.- Create a new virtual environment and test install into it:\n
\n\nThere are often install issues because sometimes only older versions of\nsome of the required packages are available on test.pypi.org. If this\nis the only problem change the version to end inexit # to get out of the current environment\ncd <somewhere>\nmkdir <new virtual environment>\ncd <new directory>\npipenv shell #creates the new environment and enters it.\npip install -i https://test.pypi.org/..... # copy actual link from the\n # repository on test.pypi.\n
rc0
for release\ncandidate and try it on the regular pypi.org as described below for\nreleasing on PyPi.- After install test by running a jupyter notebook in the virtual \nenvironment.
\nReleasing on PyPi
\n\nProceed only if testing of the build is successful.
\n\n\n
\n"}, "algebra_with_sympy.algwsym_version": {"fullname": "algebra_with_sympy.algwsym_version", "modulename": "algebra_with_sympy", "qualname": "algwsym_version", "kind": "variable", "doc": "\n", "default_value": "'1.0.2'"}, "algebra_with_sympy.algebraic_equation": {"fullname": "algebra_with_sympy.algebraic_equation", "modulename": "algebra_with_sympy.algebraic_equation", "kind": "module", "doc": "- Double check the version number in version.py.
\n- Rebuild the release:
\npython -m setup sdist bdist_wheel
.- Upload it:
\npython -m twine upload dist/*
- Make sure it works by installing it in a clean virtual environment. This\nis the same as on test.pypi.org except without
\n-i https://test.pypy...
. If\nit does not work, pull the release.This package uses a special version of sympy which defines an equation \nwith a left-hand-side (lhs) and a right-\nhand-side (rhs) connected by the \"=\" operator (e.g.
\n\np*V = n*R*T
).The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra in a stepwise fashion. In this way more people\ncan successfully perform algebraic rearrangements without stumbling over\nmissed details such as a negative sign. This mimics the capabilities available\nin SageMath and\nMaxima.
\n\nThis package also provides convenient settings for interactive use on the \ncommand line, in ipython and Jupyter notebook environments. See the \ndocumentation at https://gutow.github.io/Algebra_with_Sympy/.
\n\nExplanation
\n\nThis class defines relations that all high school and college students\nwould recognize as mathematical equations. At present only the \"=\" relation\noperator is recognized.
\n\nThis class is intended to allow using the mathematical tools in SymPy to\nrearrange equations and perform algebra in a stepwise fashion. In this\nway more people can successfully perform algebraic rearrangements without\nstumbling over missed details such as a negative sign.
\n\nCreate an equation with the call
\n\nEquation(lhs,rhs)
, wherelhs
and\nrhs
are any valid Sympy expression.Eqn(...)
is a synonym for\nEquation(...)
.Parameters
\n\nlhs: sympy expression,
\n\nclass Expr
.\nrhs: sympy expression,class Expr
.\nkwargs:Examples
\n\nNOTE: All the examples below are in vanilla python. You can get human\nreadable eqautions \"lhs = rhs\" in vanilla python by adjusting the settings\nin
\n\nalgwsym_config
(see it's documentation). Output is human readable by\ndefault in IPython and Jupyter environments.\n\n\n\n>>> from algebra_with_sympy import *\n>>> a, b, c, x = var('a b c x')\n>>> Equation(a,b/c)\nEquation(a, b/c)\n>>> t=Eqn(a,b/c)\n>>> t\nEquation(a, b/c)\n>>> t*c\nEquation(a*c, b)\n>>> c*t\nEquation(a*c, b)\n>>> exp(t)\nEquation(exp(a), exp(b/c))\n>>> exp(log(t))\nEquation(a, b/c)\n
Simplification and Expansion
\n\n\n\n\n\n>>> f = Eqn(x**2 - 1, c)\n>>> f\nEquation(x**2 - 1, c)\n>>> f/(x+1)\nEquation((x**2 - 1)/(x + 1), c/(x + 1))\n>>> (f/(x+1)).simplify()\nEquation(x - 1, c/(x + 1))\n>>> simplify(f/(x+1))\nEquation(x - 1, c/(x + 1))\n>>> (f/(x+1)).expand()\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> expand(f/(x+1))\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> factor(f)\nEquation((x - 1)*(x + 1), c)\n>>> f.factor()\nEquation((x - 1)*(x + 1), c)\n>>> f2 = f+a*x**2+b*x +c\n>>> f2\nEquation(a*x**2 + b*x + c + x**2 - 1, a*x**2 + b*x + 2*c)\n>>> collect(f2,x)\nEquation(b*x + c + x**2*(a + 1) - 1, a*x**2 + b*x + 2*c)\n
Apply operation to only one side
\n\n\n\n\n\n>>> poly = Eqn(a*x**2 + b*x + c*x**2, a*x**3 + b*x**3 + c*x)\n>>> poly.applyrhs(factor,x)\nEquation(a*x**2 + b*x + c*x**2, x*(c + x**2*(a + b)))\n>>> poly.applylhs(factor)\nEquation(x*(a*x + b + c*x), a*x**3 + b*x**3 + c*x)\n>>> poly.applylhs(collect,x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n
\n\n
.apply...
also works with user defined python functions\n\n\n\n>>> def addsquare(eqn):\n... return eqn+eqn**2\n...\n>>> t.apply(addsquare)\nEquation(a**2 + a, b**2/c**2 + b/c)\n>>> t.applyrhs(addsquare)\nEquation(a, b**2/c**2 + b/c)\n>>> t.apply(addsquare, side = 'rhs')\nEquation(a, b**2/c**2 + b/c)\n>>> t.applylhs(addsquare)\nEquation(a**2 + a, b/c)\n>>> addsquare(t)\nEquation(a**2 + a, b**2/c**2 + b/c)\n
Inaddition to
\n\n.apply...
there is also the less general.do
,\n.dolhs
,.dorhs
, which only works for operations defined on the\nExpr
class (e.g..collect(), .factor(), .expand()
, etc...).\n\n\n\n>>> poly.dolhs.collect(x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n>>> poly.dorhs.collect(x)\nEquation(a*x**2 + b*x + c*x**2, c*x + x**3*(a + b))\n>>> poly.do.collect(x)\nEquation(b*x + x**2*(a + c), c*x + x**3*(a + b))\n>>> poly.dorhs.factor()\nEquation(a*x**2 + b*x + c*x**2, x*(a*x**2 + b*x**2 + c))\n
\n\n
poly.do.exp()
or other sympy math functions will raise an error.Rearranging an equation (simple example made complicated as illustration)
\n\n\n\n\n\n>>> p, V, n, R, T = var('p V n R T')\n>>> eq1=Eqn(p*V,n*R*T)\n>>> eq1\nEquation(V*p, R*T*n)\n>>> eq2 =eq1/V\n>>> eq2\nEquation(p, R*T*n/V)\n>>> eq3 = eq2/R/T\n>>> eq3\nEquation(p/(R*T), n/V)\n>>> eq4 = eq3*R/p\n>>> eq4\nEquation(1/T, R*n/(V*p))\n>>> 1/eq4\nEquation(T, V*p/(R*n))\n>>> eq5 = 1/eq4 - T\n>>> eq5\nEquation(0, -T + V*p/(R*n))\n
Substitution (#'s and units)
\n\n\n\n\n\n>>> L, atm, mol, K = var('L atm mol K', positive=True, real=True) # units\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L})\nEquation(p, 0.9334325*atm)\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L}).evalf(4)\nEquation(p, 0.9334*atm)\n
Substituting an equation into another equation:
\n\n\n\n\n\n>>> P, P1, P2, A1, A2, E1, E2 = symbols("P, P1, P2, A1, A2, E1, E2")\n>>> eq1 = Eqn(P, P1 + P2)\n>>> eq2 = Eqn(P1 / (A1 * E1), P2 / (A2 * E2))\n>>> P1_val = (eq1 - P2).swap\n>>> P1_val\nEquation(P1, P - P2)\n>>> eq2 = eq2.subs(P1_val)\n>>> eq2\nEquation((P - P2)/(A1*E1), P2/(A2*E2))\n>>> P2_val = solve(eq2.subs(P1_val), P2).args[0]\n>>> P2_val\nEquation(P2, A2*E2*P/(A1*E1 + A2*E2))\n
Combining equations (Math with equations: lhs with lhs and rhs with rhs)
\n\n\n\n\n\n>>> q = Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> t\nEquation(a, b/c)\n>>> q+t\nEquation(a*c + a, b/c + b/c**2)\n>>> q/t\nEquation(c, 1/c)\n>>> t**q\nEquation(a**(a*c), (b/c)**(b/c**2))\n
Utility operations
\n\n\n\n\n\n>>> t.reversed\nEquation(b/c, a)\n>>> t.swap\nEquation(b/c, a)\n>>> t.lhs\na\n>>> t.rhs\nb/c\n>>> t.as_Boolean()\nEq(a, b/c)\n
\n\n
.check()
convenience method for.as_Boolean().simplify()
\n\n\n\n>>> from sympy import I, pi\n>>> Equation(pi*(I+2), pi*I+2*pi).check()\nTrue\n>>> Eqn(a,a+1).check()\nFalse\n
Differentiation\nDifferentiation is applied to both sides if the wrt variable appears on\nboth sides.
\n\n\n\n\n\n>>> q=Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> diff(q,b)\nEquation(Derivative(a*c, b), c**(-2))\n>>> diff(q,c)\nEquation(a, -2*b/c**3)\n>>> diff(log(q),b)\nEquation(Derivative(log(a*c), b), 1/b)\n>>> diff(q,c,2)\nEquation(Derivative(a, c), 6*b/c**4)\n
If you specify multiple differentiation all at once the assumption\nis order of differentiation matters and the lhs will not be\nevaluated.
\n\n\n\n\n\n>>> diff(q,c,b)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
To overcome this specify the order of operations.
\n\n\n\n\n\n>>> diff(diff(q,c),b)\nEquation(Derivative(a, b), -2/c**3)\n
But the reverse order returns an unevaulated lhs (a may depend on b).
\n\n\n\n\n\n>>> diff(diff(q,b),c)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
Integration can only be performed on one side at a time.
\n\n\n\n\n\n>>> q=Eqn(a*c,b/c)\n>>> integrate(q,b,side='rhs')\nb**2/(2*c)\n>>> integrate(q,b,side='lhs')\na*b*c\n
Make a pretty statement of integration from an equation
\n\n\n\n\n\n>>> Eqn(Integral(q.lhs,b),integrate(q,b,side='rhs'))\nEquation(Integral(a*c, b), b**2/(2*c))\n
Integration of each side with respect to different variables
\n\n\n\n\n\n>>> q.dorhs.integrate(b).dolhs.integrate(a)\nEquation(a**2*c/2, b**2/(2*c))\n
Automatic solutions using sympy solvers. THIS IS EXPERIMENTAL. Please\nreport issues at https://github.com/gutow/Algebra_with_Sympy/issues.
\n\n\n\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.__init__", "kind": "function", "doc": "\n>>> tosolv = Eqn(a - b, c/a)\n>>> solve(tosolv,a)\nFiniteSet(Equation(a, b/2 - sqrt(b**2 + 4*c)/2), Equation(a, b/2 + sqrt(b**2 + 4*c)/2))\n>>> solve(tosolv, b)\nFiniteSet(Equation(b, (a**2 - c)/a))\n>>> solve(tosolv, c)\nFiniteSet(Equation(c, a**2 - a*b))\n
This is a class to hold parameters that control behavior of\nthe algebra_with_sympy package.
\n\nSettings
\n\nPrinting
\n\nIn interactive environments the default output of an equation is a\nhuman readable string with the two sides connected by an equals\nsign or a typeset equation with the two sides connected by an equals sign.\n
\n\nprint(Eqn)
orstr(Eqn)
will return this human readable text version of\nthe equation as well. This is consistent with python standards, but not\nsympy, wherestr()
is supposed to return something that can be\ncopy-pasted into code. If the equation has a declared name as ineq1 =\nEqn(a,b/c)
the name will be displayed to the right of the equation in\nparentheses (eg.a = b/c (eq1)
). Useprint(repr(Eqn))
instead of\nprint(Eqn)
orrepr(Eqn)
instead ofstr(Eqn)
to get a code\ncompatible version of the equation.You can adjust this behavior using some flags that impact output:
\n\n\n
\n\n- \n
algwsym_config.output.show_code
default isFalse
.- \n
algwsym_config.output.human_text
default isTrue
.- \n
algwsym_config.output.label
default isTrue
.- \n
algwsym_config.output.latex_as_equations
default isFalse
In interactive environments you can get both types of output by setting\nthe
\n\nalgwsym_config.output.show_code
flag. If this flag is true\ncalls tolatex
andstr
will also print an additional line \"code\nversion:repr(Eqn)
\". Thus in Jupyter you will get a line of typeset\nmathematics output preceded by the code version that can be copy-pasted.\nDefault isFalse
.A second flag
\n\nalgwsym_config.output.human_text
is useful in\ntext-based interactive environments such as command line python or\nipython. If this flag is truerepr
will returnstr
. Thus the human\nreadable text will be printed as the output of a line that is an\nexpression containing an equation.\nDefault isTrue
.Setting both of these flags to true in a command line or ipython\nenvironment will show both the code version and the human readable text.\nThese flags impact the behavior of the
\n\nprint(Eqn)
statement.The third flag
\n\nalgwsym_config.output.label
has a default value of\nTrue
. Setting this toFalse
suppresses the labeling of an equation\nwith its python name off to the right of the equation.The fourth flag
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.__init__", "kind": "function", "doc": "algwsym_config.output.latex_as_equations
has\na default value ofFalse
. Setting this toTrue
wraps\noutput as LaTex equations wrapping them in\\begin{equation}...\\end{\nequation}
.This holds settings that impact output.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.show_code", "kind": "variable", "doc": "If
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.human_text", "kind": "variable", "doc": "True
code versions of the equation expression will be\noutput in interactive environments. Default =False
.If
\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.solve_to_list", "kind": "variable", "doc": "True
the human readable equation expression will be\noutput in text interactive environments. Default =False
.If
\n\nTrue
the results of a call tosolve(...)
will return a\nPythonlist
rather than a SympyFiniteSet
. This recovers\nbehavior for versions before 0.11.0.Note: setting this
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.latex_as_equations", "kind": "variable", "doc": "True
means that expressions within the\nreturned solutions will not be pretty-printed in Jupyter and\nIPython.If
\n\nTrue
any output that is returned as LaTex for\npretty-printing will be wrapped in the formal Latex for an\nequation. For example rather than\n\n$\\frac{a}{b}=c$\n
the output will be
\n\n\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.label", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.label", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.__init__", "kind": "function", "doc": "\\begin{equation}\\frac{a}{b}=c\\end{equation}\n
This class holds settings for how numerical computation and\ninputs are handled.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.integers_as_exact", "kind": "function", "doc": "This is a flag for informational purposes and interface\nconsistency. Changing the value will not change the behavior.
\n\nTo change the behavior call:
\n\n\n
\n\n- \n
unset_integers_as_exact()
to turn this feature off.- \n
set_integers_as_exact()
to turn this feature on (on by\ndefault).If set to
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.ip": {"fullname": "algebra_with_sympy.algebraic_equation.ip", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "ip", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.formatter": {"fullname": "algebra_with_sympy.algebraic_equation.formatter", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "formatter", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.set_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "set_integers_as_exact", "kind": "function", "doc": "True
(the default) and if running in an\nIPython/Jupyter environment any number input without a decimal\nwill be interpreted as a sympy integer. Thus, fractions and\nrelated expressions will not evalute to floating point numbers,\nbut be maintained as exact expressions (e.g. 2/3 -> 2/3 not the\nfloat 0.6666...).This operation uses
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.unset_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "unset_integers_as_exact", "kind": "function", "doc": "sympy.interactive.session.int_to_Integer
, which\ncauses any number input without a decimal to be interpreted as a sympy\ninteger, to pre-parse input cells. It also sets the flag\nalgwsym_config.numerics.integers_as_exact = True
This is the default\nmode of algebra_with_sympy. To turn this off call\nunset_integers_as_exact()
.This operation disables forcing of numbers input without\ndecimals being interpreted as sympy integers. Numbers input without a\ndecimal may be interpreted as floating point if they are part of an\nexpression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It\nalso sets the flag
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eqn", "kind": "variable", "doc": "\n", "default_value": "<class 'sympy.core.equation.Equation'>"}, "algebra_with_sympy.algebraic_equation.units": {"fullname": "algebra_with_sympy.algebraic_equation.units", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "units", "kind": "function", "doc": "algwsym_config.numerics.integers_as_exact = False
.\nCallset_integers_as_exact()
to avoid this conversion of rational\nfractions and related expressions to floating point. Algebra_with_sympy\nstarts withset_integers_as_exact()
enabled (\nalgwsym_config.numerics.integers_as_exact = True
).This operation declares the symbols to be positive values, so that sympy\nwill handle them properly when simplifying expressions containing units.\nUnits defined this way are just unit symbols. If you want units that are\naware of conversions see sympy.physics.units.
\n\nParameters
\n\n\n
\n\n- string names: a string containing a space separated list of\nsymbols to be treated as units.
\nReturns
\n\n\n\n", "signature": "(names):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solve": {"fullname": "algebra_with_sympy.algebraic_equation.solve", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solve", "kind": "function", "doc": "calls
\nname = symbols(name,\npositive=True)
in the interactive namespace for each symbol name.Override of sympy
\n\nsolve()
.If passed an expression and variable(s) to solve for it behaves\nalmost the same as normal solve with
\n\ndict = True
, except that solutions\nare wrapped in a FiniteSet() to guarantee that the output will be pretty\nprinted in Jupyter like environments.If passed an equation or equations it returns solutions as a\n
\n\nFiniteSet()
of solutions, where each solution is represented by an\nequation or set of equations.To get a Python
\n\nlist
of solutions (pre-0.11.0 behavior) rather than a\nFiniteSet
issue the commandalgwsym_config.output.solve_to_list = True
.\nThis also prevents pretty-printing in IPython and Jupyter.Examples
\n\n\n\n\n\n>>> a, b, c, x, y = symbols('a b c x y', real = True)\n>>> import sys\n>>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.\n>>> eq1 = Eqn(abs(2*x+y),3)\n>>> eq2 = Eqn(abs(x + 2*y),3)\n>>> B = solve((eq1,eq2))\n
Default human readable output on command line
\n\n\n\n\n\n>>> B\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
To get raw output turn off by setting
\n\n\n\n\n\n>>> algwsym_config.output.human_text=False\n>>> B\nFiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n
Pre-0.11.0 behavior where a python list of solutions is returned
\n\n\n\n\n\n>>> algwsym_config.output.solve_to_list = True\n>>> solve((eq1,eq2))\n[[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]\n>>> algwsym_config.output.solve_to_list = False # reset to default\n
\n\n
algwsym_config.output.human_text = True
with\nalgwsym_config.output.how_code=True
shows both.\nIn Jupyter-like environmentsshow_code=True
yields the Raw output and\na typeset version. Ifshow_code=False
(the default) only the\ntypeset version is shown in Jupyter.\n\n", "signature": "(f, *symbols, **flags):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solveset": {"fullname": "algebra_with_sympy.algebraic_equation.solveset", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solveset", "kind": "function", "doc": "\n>>> algwsym_config.output.show_code=True\n>>> algwsym_config.output.human_text=True\n>>> B\nCode version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
Very experimental override of sympy solveset, which we hope will replace\nsolve. Much is not working. It is not clear how to input a system of\nequations unless you directly select
\n", "signature": "(f, symbols, domain=Complexes):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality": {"fullname": "algebra_with_sympy.algebraic_equation.Equality", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality", "kind": "class", "doc": "linsolve
, etc...Extension of Equality class to include the ability to convert it to an\nEquation.
\n", "bases": "sympy.core.relational.Equality"}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Equation", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Equation", "kind": "function", "doc": "Return: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Eqn", "kind": "function", "doc": "Synonym for to_Equation.\nReturn: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.default_assumptions", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.default_assumptions", "kind": "variable", "doc": "\n", "default_value": "{}"}, "algebra_with_sympy.algebraic_equation.Eq": {"fullname": "algebra_with_sympy.algebraic_equation.Eq", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eq", "kind": "variable", "doc": "\n", "default_value": "<class 'algebra_with_sympy.algebraic_equation.Equality'>"}, "algebra_with_sympy.algebraic_equation.abs": {"fullname": "algebra_with_sympy.algebraic_equation.abs", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "abs", "kind": "variable", "doc": "\n", "default_value": "Abs"}, "algebra_with_sympy.preparser": {"fullname": "algebra_with_sympy.preparser", "modulename": "algebra_with_sympy.preparser", "kind": "module", "doc": "\n"}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"fullname": "algebra_with_sympy.preparser.algebra_with_sympy_preparser", "modulename": "algebra_with_sympy.preparser", "qualname": "algebra_with_sympy_preparser", "kind": "function", "doc": "In IPython compatible environments (Jupyter, IPython, etc...) this supports\na special compact input method for equations.
\n\nThe syntax supported is
\n\nequation_name =@ equation.lhs = equation.rhs
,\nwhereequation_name
is a valid Python name that can be used to refer to\nthe equation later.equation.lhs
is the left-hand side of the equation\nandequation.rhs
is the right-hand side of the equation. Each side of the\nequation must parse into a valid Sympy expression.Note: This does not support line continuation. Long equations should be\nbuilt by combining expressions using names short enough to do this on one\nline. The alternative is to use
\n\nequation_name = Eqn(long ...\nexpressions ... with ... multiple ... lines)
.Note: If the
\n\nequation_name
is omitted the equation will be formed,\nbut it will not be assigned to a name that can be used to refer to it\nlater. You may be able to access it through one of the special IPython\nunderscore names. This is not recommended.THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT\nBEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED\nDIRECTLY BY A USER
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.preparser.integers_as_exact": {"fullname": "algebra_with_sympy.preparser.integers_as_exact", "modulename": "algebra_with_sympy.preparser", "qualname": "integers_as_exact", "kind": "function", "doc": "This preparser uses
\n\nsympy.interactive.session.int_to_Integer
to\nconvert numbers without decimal points into sympy integers so that math\non them will be exact rather than defaulting to floating point. This\nshould not be called directly by the user. It is plugged into the\nIPython preparsing sequence when the feature is requested. The default for\nAlgebra_with_sympy is to use this preparser. This can be turned on and\noff using the Algebra_with_sympy functions:\n
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.version": {"fullname": "algebra_with_sympy.version", "modulename": "algebra_with_sympy.version", "kind": "module", "doc": "\n"}}, "docInfo": {"algebra_with_sympy": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3354}, "algebra_with_sympy.algwsym_version": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 4002}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 530}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 65}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 50}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 15}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 126}, "algebra_with_sympy.algebraic_equation.ip": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.formatter": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 69}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 102}, "algebra_with_sympy.algebraic_equation.Eqn": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.units": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 100}, "algebra_with_sympy.algebraic_equation.solve": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 834}, "algebra_with_sympy.algebraic_equation.solveset": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 38}, "algebra_with_sympy.algebraic_equation.Equality": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 17}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.Eq": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.abs": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 229}, "algebra_with_sympy.preparser.integers_as_exact": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "algebra_with_sympy.version": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 33, "save": true}, "index": {"qualname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 13}}}}, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}}, "fullname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 33, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 13}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 33}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 33}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algwsym_version": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 4, "x": {"2": {"7": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.units": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 3.1622776601683795}}, "df": 13, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "doc": {"root": {"0": {"0": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"0": {"6": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 6}, "1": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.47213595499958}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "2": {"0": {"2": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "/": {"3": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2}, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "3": {"9": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}}, "df": 3}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "5": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "6": {"6": {"6": {"6": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "9": {"3": {"3": {"4": {"3": {"2": {"5": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 29.866369046136157}, "algebra_with_sympy.algwsym_version": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 50.049975024968795}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 11}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 20.149441679609886}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 5.830951894845301}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 4.69041575982343}, "algebra_with_sympy.version": {"tf": 1.7320508075688772}}, "df": 33, "a": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 7.483314773547883}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}}, "df": 11, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "d": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 6.164414002968976}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.872983346207417}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}}, "df": 1}, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4, "q": {"1": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}, "4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "5": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 8.366600265340756}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.605551275463989}}, "df": 11, "s": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 5}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 7}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 8, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 5.5677643628300215}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 12, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 5, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "n": {"docs": {"algebra_with_sympy": {"tf": 6.855654600401044}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 4}, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 5}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 12}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 7, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.4641016151377544}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 7.14142842854285}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 12, "f": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "f": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.605551275463989}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 5.385164807134504}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3}}, "df": 12}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 13}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "e": {"docs": {"algebra_with_sympy": {"tf": 10.099504938362077}, "algebra_with_sympy.algebraic_equation": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.7416573867739413}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 17, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "m": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 7.810249675906654}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 14, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 6.708203932499369}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": null}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "\\": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 16.522711641858304}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 6.708203932499369}}, "df": 3}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}}, "df": 1, "y": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}}, "df": 1}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "r": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "#": {"2": {"1": {"3": {"3": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1, "p": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}, "*": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 6}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}}, "df": 3, "y": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7}, "e": {"docs": {"algebra_with_sympy": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.6457513110645907}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 14, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "g": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "u": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 2}, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2.23606797749979}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "o": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 8, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "*": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}, "k": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 3, "^": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "q": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4.47213595499958}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"algebra_with_sympy": {"fullname": "algebra_with_sympy", "modulename": "algebra_with_sympy", "kind": "module", "doc": "- \n
set_integers_as_exact()
- \n
unset_integers_as_exact()
\nNOTE: This option does not work in plain vanilla Python sessions. You\nmust be running in an IPython environment (Jupyter, Notebook, Colab,\netc...).Algebraic Equations with SymPy
\n\nIntroduction | Output Formatting\n| Installation |\nTry Live | Issues or Comments |\nChange Log |\nLicense\n| GIT Repository\n| PyPi Link
\n\nWebsite/Documentation (including API)
\n\nIntroduction
\n\n\n\nThis tool defines relations that all high school and college students would\nrecognize as mathematical equations. \nThey consist of a left hand side (lhs) and a right hand side (rhs) connected by\nthe relation operator \"=\". In addition, it sets some convenient defaults and \nprovides some controls of output formatting that may be useful even if\nyou do not use the
\n\nEquation
class (see Conveniences for\nSymPy).This tool applies operations to both sides of the equation simultaneously, just\nas students are taught to do when \nattempting to isolate (solve for) a variable. Thus the statement
\n\nEquation/b
\nyields a new equationEquation.lhs/b = Equation.rhs/b
The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra\nin a stepwise fashion using as close to standard mathematical notation as \npossible. In this way more people can successfully perform \nalgebraic rearrangements without stumbling\nover missed details such as a negative sign.
\n\nA simple example as it would appear in a Jupyter \nnotebook is shown immediately below:
\n\n\n\nThe last cell illustrates how it is possible to substitute numbers with \nunits into the solved equation to calculate a numerical solution with \nproper units. The
\n\nunits(...)
operation is part this package, not Sympy.In IPython environments (IPython, Jupyter, Google Colab, etc...) there is \nalso a shorthand syntax for entering equations provided through the IPython \npreparser. An equation can be specified as
\n\n\n\neq1 =@ a/b = c/d
.If no Python name is \nspecified for the equation (no
\n\neq_name
to the left of=@
), the equation \nwill still be defined, but will not be easily accessible for further \ncomputation. The=@
symbol combination was chosen to avoid conflicts with \nreserved python symbols while minimizing impacts on syntax highlighting \nand autoformatting.More examples of the capabilities of Algebra with Sympy are \nhere.
\n\nMany math packages such as SageMath \nand Maxima have similar capabilities, \nbut require more knowledge of command syntax, plus they cannot easily be \ninstalled in a generic python environment.
\n\nConvenience Tools and Defaults for Interactive Use of SymPy
\n\nEven if you do not use the
\n\nEquation
class, there are some convenience \ntools and defaults that will probably make interactive use of SymPy in \nJupyter/IPython environments easier:\n
\n\n- By default, all numbers in Sympy expressions without decimal points are \ninterpreted as integers (e.g.
\n2/3*x
, where x is a sympy symbol, -> \n2*x/3
notx*0.6666...
, but if x is just a plain Python object then2/3*x
\n->x*0.66666...
). This can be turned off withunset_integers_as_exact()
, \nwhich leads to standard Python behavior (2/3*x
->x*0.6666...
) even for \nSympy expressions. Turn on withset_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
.- Results of
\nsolve()
are wrapped inFiniteSet()
to force pretty-printing \nof all of a solution set. See Controlling the Format of Interactive \nOutputs.- It is possible to set the default display to show both the pretty-printed \nresult and the code version simultaneously. See Controlling the Format of Interactive \nOutputs.
\nControlling the Format of Interactive Outputs
\n\n\n\n\n
\n\n- These controls impact all Sympy objects and the
\nEquation
class.- In graphical environments (Jupyter) you will get rendered Latex such as \n$\\frac{a}{b} = \\frac{c}{d}$ or $e^{\\frac{-x^2}{\\sigma^2}}$. To also see the \ncode representation (what can be copied and pasted for \nadditional computation) set
\nalgwsym_config.output.show_code = True
. \nThis will print the code version (e.g.Equation(a,b/c)
) of equations \nand sympy expression in addition to the human readable version. This code \nversion can be accessed directly by callingrepr()
on the \nequation or expression.\n
\n\n- \n
In interactive text environments (IPython and command line) The human \nreadable string version of Sympy expressions are returned (for
\n\nEquations
a \n= b rather than Equation(a,b)). This is equivalent to Callingprint()
\norstr()
on an expression.\n
- To have the code version (can be copied and pasted as a \nPython statement) returned, set
\nalgwsym_config.output.human_text = False
.- Setting both
\nalgwsym_config.output.human_text = True
\nandalgwsym_config.output.show_code = True
, will return both the \ncode and human readable versions.- \n
The equation label can be turned off by setting\n
algwsym_config.output.label = False
.- \n
Automatic wrapping of
Equations
as Latex equations can be activated \nby settingalgwsym_config.output.latex_as_equations
toTrue
. The \ndefault isFalse
. Setting this toTrue
wraps output as LaTex equations,\nwrapping them in\\begin{equation}...\\end{equation}
. Equations formatted \nthis way will not be labeled with the internal name for the equation, \nindependent of the setting ofalgwsym_config.output.label
.- \n
By default solutions output by
solve()
are returned as a SymPy \nFiniteSet()
to force typesetting of the included solutions. To get Python \nlists instead you can override this for the whole session by setting\nalgwsym_config.output.solve_to_list = True
. For a one-off, simply \nwrap the output of a solve inlist()
(e.g.list(solve(...))
). One \nadvantage of list mode is that lists can be ordered. When\nalgwsym_config.output.solve_to_list = True
solve()
maintains the \nsolutions in the order the solve for variables were input.Setup/Installation
\n\n\n\n\n
\n\n- Use pip to install in your python environment: \n
\npip install -U Algebra-with-SymPy
- To use in a running python session issue\nthe following command :
\nfrom algebra_with_sympy import *
. \nThis will also import the SymPy tools.- If you want to isolate this tool from the global namespace you are \nworking with change the import statement \nto
\nimport algebra_with_sympy as spa
, where \nspa
stands for \"SymPy Algebra\". Then all calls would be made to\nspa.funcname()
. WARNING: Doing this makes shorthand equation input and \ncontrol of interactive output formats unavailable. To recover this \nfunctionality the following code must be run in the interactive session.\n\nEquation = spa.Equation\nEqn = Equation\nalgwsym_config = spa.algwsym_config\n
Try in binder
\n\n\n\nIssues or Comments
\n\n\n\n\n
\n\n- Issues and bug reports should be filed on \ngithub.
\n- Comments, questions, show and tell, etc. should go in the project \ndiscussions.
\nChange Log
\n\n\n\n\n
\n\n- 1.1.0 (July 21, 2024)\n
\n\n
- Setting integers as exact (
\nset_integers_as_exact()
, the default) now \nonly sets integers as exact within Sympy and Algebra_with_Sympy \nexpressions. This increases compatibility with other packages that \ndepend on integers being Python integers.- Refuse to import Algebra_with_Sympy if an incompatible \nversion of Sympy is installed in the environment.
\n- Added warning explaining how to install a compatible version of Sympy.
\n- 1.0.2 (July 5, 2024)\n
\n\n
- Removed requirements for Jupyter and Jupyterlab as code will work in \nvanilla python or Google Colab.
\n- Workaround for Google Colab's inconsistent handling of mixed Latex and \nplain text strings. This impacted display of equation labels in Colab.
\n- BUG FIX: catch IPython not installed so that can run in plain vanilla \npython.
\n- 1.0.1 (May 22, 2024)\n
\n\n
- BUG FIX: equation labels that include underscore characters \"_\" are now \naccepted.
\n- BUG FIX: wrapping equations formatted as LaTex equation (ie. surrounded \nby
\n\\begin{equation}...\\end{equation}
) in the$..$
code used to \nindicate markdown for MathJax was causing output errors in Quarto when \noutputing to .tex or .pdf. This is now fixed without negatively \nimpacting MathJax rendering.- BUG FIX: Singleton results of solve unnecessarily wrapped by extra list \nor finiteset. No longer double nested.
\n- BUG FIX: When returning lists make solve respect user order of solutions.
\n- BUG FIX: Equation output threw error when Algebra_with_Sympy was \nimported as a submodule. Equation labeling turned off for this type of \nimport to avoid error.
\n- BUG FIX: Equation labels are now copyable even with the newer MathJax \ncommonHTML rendering.
\n- Updates to requirements.txt.
\n- Documentation updates.
\n- 1.0.0 (January 2, 2024)\n
\n\n
- Added convenience operation
\nunits(...)
which takes a string of space \nseparated symbols to use as units. This simply declares the symbols \nto be positive, making them behave as units. This does not create units \nthat know about conversions, prefixes or systems of units. This lack \nis on purpose to provide units that require the user to worry about \nconversions (ideal in a teaching situation). To get units with built-in \nconversions seesympy.physics.units
.- Fixed issue #23 where
\ncos()
multiplied by a factor was not the same \ntype of object aftersimplify()
acted on an expression. Required \nembedding theEquation
type in the sympy library. UntilEquation
is \nincorporated into the primary Sympy repository a customized version of \nthe latest stable release will be used.- Fixed issue where trailing comments (ie.
\n# a comment
at the end of a \nline) lead to input errors using compact=@
notation.- \n
algwsym_config.output.latex_as_equations
has a default value ofFalse
.\n Setting this toTrue
wraps output as LaTex equations wrapping them \nin\\begin{equation}...\\end{equation}
. Equations formatted this way \nwill not be labeled with the internal name for the equation.- 0.12.0 (July 12, 2023)\n
\n\n
- Now defaults to interpreting numbers without decimal points as integers. \nThis can be turned off with
\nunset_integers_as_exact()
and on with\nset_integers_as_exact()
. When on the flag\nalgwsym_config.numerics.integers_as_exact = True
.- 0.11.0 (June 5, 2023)\n
\n\n
- Formatting of
\nFiniteSets
overridden so that the contents always\npretty-print. This removes the necessity of special flags to get \npretty output fromsolve
.- Sympy
\nsolve()
now works reliably with equations and outputs \npretty-printed solutions.- Added option
\nalgwsym_config.output.solve_to_list = True
which causes \nsolve()
to return solutions sets as Python lists. Using this option \nprevents pretty-printing of the solutions produced bysolve()
.- \n
algwsym_config.output.show_code
and \nalgwsym_config.output.human_text
now work for all sympy objects, not \njustEquation
objects. This works\nin terminal, IPython terminal and Jupyter. This is achieved by hooking \ninto the pythondisplay_hook
and IPythondisplay_formatter
.- Added jupyter to requirements.txt so that virtual environment builds\nwill include jupyter.
\n- The way
\n__version__
was handled could break pip install. Changed to\ngenerating the internal version during setup. This means the version\nis now available asalgwsym_version
.- 0.10.0 (Sep. 5, 2022)\n
\n\n
- Documentation updates and fixes.
\n- Significantly increased test coverage (~98%).
\n- Support for
\nEqn.rewrite(Add)
- Solving (e.g.
\nsolve(Eqn,x)
) now supported fully. Still experimental.- Bug fix: latex printing now supports custom printer.
\n- Substitution into an Equation using Equations is now \nsupported (e.g.
\neq1.subs(eq2, eq3, ...)
).- \n
algebra_with_sympy.__version__
is now available for version checking \nwithin python.- Bug fix: preparsing for
\n=@
syntax no longer blocksobj?
syntax for \ngetting docstrings in ipython.- More robust determination of equation names for labeling.
\n- 0.9.4 (Aug. 11, 2022)\n
\n\n
- Update to deal with new Sympy function
\npiecewise_exclusive
in v1.11.- Added user warning if a function does not extend for use with
\nEquations
\nas expected. This also allows the package to be used even when a function \nextension does fail.- Simplification of documentation preparation.
\n- Typo fixes in preparser error messages.
\n- 0.9.3 (Aug. 9, 2022)\n
\n\n
- Added check for new enough version of IPython to use the preparser.
\n- If IPython version too old, issue warning and do not accept
\n=@
shorthand.- 0.9.2 (Jun. 5, 2022)\n
\n\n
- \n
=@
shorthand syntax for defining equations in IPython compatible \nenvironments.- Fixed bug where
\nroot()
override calledsqrt()
on bare expressions.- 0.9.1 (Mar. 24, 2022)\n
\n\n
- Equations labeled with their python name, if they have one.
\n- Added flags to adjust human readable output and equation labeling.
\n- Accept equation as function argument in any position.
\n- First pass at
\nsolve()
accepting equations.- Added override of
\nroot()
to avoid warning messages.- More unit tests.
\n- First pass at documentation.
\n- 0.9.0 functionality equivalent to extension of SymPy in\nPR#21333.
\nlicensed under GNU V3 license
\n\n\nThis program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.
\n\nCopyright - Algebra with Sympy Contributors 2021, 2022, 2023, 2024
\n\nDevelopment Notes
\n\nGeneral | Make Docs | \nRunning Tests | \nBuild PyPi Package|
\n\nGeneral Notes
\n\n\n\n\n
\n\n- TODOs\n
\n\n
- Test collect when there isn't an available _eval_collect (not sure how \nto get there).
\n- Test for _binary_op NotImplemented error (not sure how to get there).
\n- To consider\n
\n\n
- Include Sympy Plot Backends\nin the default setup.
\n- Change
\nEquation
constructor to acceptEquality
,Set
,List
or \nlhs, rhs
, rather than justlhs, rhs
.- Extend
\n.subs
to accept.subs(a=2*c, b = sin(q), ...)
.- MathLive on another web page as possible\ninput engine.
\nConstructing the Documentation
\n\n\n\n\n
\n\n- Make sure pdoc is installed and updated in the virtual environment
\npip \ninstall -U pdoc
.- Update any
\n.md
files included in_init_.py
.\n\n
- Generally URLs should be absolute, not relative.
\n- At the root level run pdoc \n
\n\npdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg \n--logo-link https://gutow.github.io/Algebra_with_Sympy/\n--footer-text \"Algebra with Sympy vX.X.X\" --math -html -o docs \n./algebra_with_sympy\n
\nwhereX.X.X
is the version number.Tasks for Documentation
\n\n\n\n\n
\n\n- Readme.md & Development Notes.md\n
\n\n
- Use absolute path to github pages for more examples.
\nRunning Tests
\n\n\n\n\n
\n\n- Install updated pytest in the virtual environment:\n
\npipenv shell\npip install -U pytest\n
- Run standard tests:\n
\npytest --ignore='Developer Testing' --ignore-glob='*test_preparser.py'
.- Run preparser tests:\n
\nipython -m pytest tests/test_preparser.py
- Run doctests:\n
\npytest --ignore='tests' --ignore='Developer Testing' \n--ignore-glob='*old*' --doctest-modules
You can run all the tests using the dotests script:
\n\n./dotests.sh
.NOTE: Some warnings about invalid escape characters are expected because \nraw strings are being passed with specialized LaTex escaped characters.
\n\nBuilding PyPi package
\n\n\n\n\n
\n\n- Make sure to update the version number in setup.py first.
\n- Install updated setuptools and twine in the virtual environment:\n
\npipenv shell\npip install -U setuptools wheel twine\n
- Build the distribution
\npython -m setup sdist bdist_wheel
.- Test it on
\ntest.pypi.org
.\n\n
- Upload it (you will need an account on test.pypi.org):\n
\npython -m twine upload --repository testpypi dist/*
.- Create a new virtual environment and test install into it:\n
\n\nThere are often install issues because sometimes only older versions of\nsome of the required packages are available on test.pypi.org. If this\nis the only problem change the version to end inexit # to get out of the current environment\ncd <somewhere>\nmkdir <new virtual environment>\ncd <new directory>\npipenv shell #creates the new environment and enters it.\npip install -i https://test.pypi.org/..... # copy actual link from the\n # repository on test.pypi.\n
rc0
for release\ncandidate and try it on the regular pypi.org as described below for\nreleasing on PyPi.- After install test by running a jupyter notebook in the virtual \nenvironment.
\nReleasing on PyPi
\n\n\nProceed only if testing of the build is successful.
\n\n\n
\n"}, "algebra_with_sympy.proper_sympy": {"fullname": "algebra_with_sympy.proper_sympy", "modulename": "algebra_with_sympy", "qualname": "proper_sympy", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation": {"fullname": "algebra_with_sympy.algebraic_equation", "modulename": "algebra_with_sympy.algebraic_equation", "kind": "module", "doc": "- Double check the version number in version.py.
\n- Rebuild the release:
\npython -m setup sdist bdist_wheel
.- Upload it:
\npython -m twine upload dist/*
- Make sure it works by installing it in a clean virtual environment. This\nis the same as on test.pypi.org except without
\n-i https://test.pypy...
. If\nit does not work, pull the release.This package uses a special version of sympy which defines an equation \nwith a left-hand-side (lhs) and a right-\nhand-side (rhs) connected by the \"=\" operator (e.g.
\n\np*V = n*R*T
).The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra in a stepwise fashion. In this way more people\ncan successfully perform algebraic rearrangements without stumbling over\nmissed details such as a negative sign. This mimics the capabilities available\nin SageMath and\nMaxima.
\n\nThis package also provides convenient settings for interactive use on the \ncommand line, in ipython and Jupyter notebook environments. See the \ndocumentation at https://gutow.github.io/Algebra_with_Sympy/.
\n\nExplanation
\n\nThis class defines relations that all high school and college students\nwould recognize as mathematical equations. At present only the \"=\" relation\noperator is recognized.
\n\nThis class is intended to allow using the mathematical tools in SymPy to\nrearrange equations and perform algebra in a stepwise fashion. In this\nway more people can successfully perform algebraic rearrangements without\nstumbling over missed details such as a negative sign.
\n\nCreate an equation with the call
\n\nEquation(lhs,rhs)
, wherelhs
and\nrhs
are any valid Sympy expression.Eqn(...)
is a synonym for\nEquation(...)
.Parameters
\n\nlhs: sympy expression,
\n\nclass Expr
.\nrhs: sympy expression,class Expr
.\nkwargs:Examples
\n\nNOTE: All the examples below are in vanilla python. You can get human\nreadable eqautions \"lhs = rhs\" in vanilla python by adjusting the settings\nin
\n\nalgwsym_config
(see it's documentation). Output is human readable by\ndefault in IPython and Jupyter environments.\n\n\n\n>>> from algebra_with_sympy import *\n>>> a, b, c, x = var('a b c x')\n>>> Equation(a,b/c)\nEquation(a, b/c)\n>>> t=Eqn(a,b/c)\n>>> t\nEquation(a, b/c)\n>>> t*c\nEquation(a*c, b)\n>>> c*t\nEquation(a*c, b)\n>>> exp(t)\nEquation(exp(a), exp(b/c))\n>>> exp(log(t))\nEquation(a, b/c)\n
Simplification and Expansion
\n\n\n\n\n\n>>> f = Eqn(x**2 - 1, c)\n>>> f\nEquation(x**2 - 1, c)\n>>> f/(x+1)\nEquation((x**2 - 1)/(x + 1), c/(x + 1))\n>>> (f/(x+1)).simplify()\nEquation(x - 1, c/(x + 1))\n>>> simplify(f/(x+1))\nEquation(x - 1, c/(x + 1))\n>>> (f/(x+1)).expand()\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> expand(f/(x+1))\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> factor(f)\nEquation((x - 1)*(x + 1), c)\n>>> f.factor()\nEquation((x - 1)*(x + 1), c)\n>>> f2 = f+a*x**2+b*x +c\n>>> f2\nEquation(a*x**2 + b*x + c + x**2 - 1, a*x**2 + b*x + 2*c)\n>>> collect(f2,x)\nEquation(b*x + c + x**2*(a + 1) - 1, a*x**2 + b*x + 2*c)\n
Apply operation to only one side
\n\n\n\n\n\n>>> poly = Eqn(a*x**2 + b*x + c*x**2, a*x**3 + b*x**3 + c*x)\n>>> poly.applyrhs(factor,x)\nEquation(a*x**2 + b*x + c*x**2, x*(c + x**2*(a + b)))\n>>> poly.applylhs(factor)\nEquation(x*(a*x + b + c*x), a*x**3 + b*x**3 + c*x)\n>>> poly.applylhs(collect,x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n
\n\n
.apply...
also works with user defined python functions\n\n\n\n>>> def addsquare(eqn):\n... return eqn+eqn**2\n...\n>>> t.apply(addsquare)\nEquation(a**2 + a, b**2/c**2 + b/c)\n>>> t.applyrhs(addsquare)\nEquation(a, b**2/c**2 + b/c)\n>>> t.apply(addsquare, side = 'rhs')\nEquation(a, b**2/c**2 + b/c)\n>>> t.applylhs(addsquare)\nEquation(a**2 + a, b/c)\n>>> addsquare(t)\nEquation(a**2 + a, b**2/c**2 + b/c)\n
Inaddition to
\n\n.apply...
there is also the less general.do
,\n.dolhs
,.dorhs
, which only works for operations defined on the\nExpr
class (e.g..collect(), .factor(), .expand()
, etc...).\n\n\n\n>>> poly.dolhs.collect(x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n>>> poly.dorhs.collect(x)\nEquation(a*x**2 + b*x + c*x**2, c*x + x**3*(a + b))\n>>> poly.do.collect(x)\nEquation(b*x + x**2*(a + c), c*x + x**3*(a + b))\n>>> poly.dorhs.factor()\nEquation(a*x**2 + b*x + c*x**2, x*(a*x**2 + b*x**2 + c))\n
\n\n
poly.do.exp()
or other sympy math functions will raise an error.Rearranging an equation (simple example made complicated as illustration)
\n\n\n\n\n\n>>> p, V, n, R, T = var('p V n R T')\n>>> eq1=Eqn(p*V,n*R*T)\n>>> eq1\nEquation(V*p, R*T*n)\n>>> eq2 =eq1/V\n>>> eq2\nEquation(p, R*T*n/V)\n>>> eq3 = eq2/R/T\n>>> eq3\nEquation(p/(R*T), n/V)\n>>> eq4 = eq3*R/p\n>>> eq4\nEquation(1/T, R*n/(V*p))\n>>> 1/eq4\nEquation(T, V*p/(R*n))\n>>> eq5 = 1/eq4 - T\n>>> eq5\nEquation(0, -T + V*p/(R*n))\n
Substitution (#'s and units)
\n\n\n\n\n\n>>> L, atm, mol, K = var('L atm mol K', positive=True, real=True) # units\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L})\nEquation(p, 0.9334325*atm)\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L}).evalf(4)\nEquation(p, 0.9334*atm)\n
Substituting an equation into another equation:
\n\n\n\n\n\n>>> P, P1, P2, A1, A2, E1, E2 = symbols("P, P1, P2, A1, A2, E1, E2")\n>>> eq1 = Eqn(P, P1 + P2)\n>>> eq2 = Eqn(P1 / (A1 * E1), P2 / (A2 * E2))\n>>> P1_val = (eq1 - P2).swap\n>>> P1_val\nEquation(P1, P - P2)\n>>> eq2 = eq2.subs(P1_val)\n>>> eq2\nEquation((P - P2)/(A1*E1), P2/(A2*E2))\n>>> P2_val = solve(eq2.subs(P1_val), P2).args[0]\n>>> P2_val\nEquation(P2, A2*E2*P/(A1*E1 + A2*E2))\n
Combining equations (Math with equations: lhs with lhs and rhs with rhs)
\n\n\n\n\n\n>>> q = Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> t\nEquation(a, b/c)\n>>> q+t\nEquation(a*c + a, b/c + b/c**2)\n>>> q/t\nEquation(c, 1/c)\n>>> t**q\nEquation(a**(a*c), (b/c)**(b/c**2))\n
Utility operations
\n\n\n\n\n\n>>> t.reversed\nEquation(b/c, a)\n>>> t.swap\nEquation(b/c, a)\n>>> t.lhs\na\n>>> t.rhs\nb/c\n>>> t.as_Boolean()\nEq(a, b/c)\n
\n\n
.check()
convenience method for.as_Boolean().simplify()
\n\n\n\n>>> from sympy import I, pi\n>>> Equation(pi*(I+2), pi*I+2*pi).check()\nTrue\n>>> Eqn(a,a+1).check()\nFalse\n
Differentiation\nDifferentiation is applied to both sides if the wrt variable appears on\nboth sides.
\n\n\n\n\n\n>>> q=Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> diff(q,b)\nEquation(Derivative(a*c, b), c**(-2))\n>>> diff(q,c)\nEquation(a, -2*b/c**3)\n>>> diff(log(q),b)\nEquation(Derivative(log(a*c), b), 1/b)\n>>> diff(q,c,2)\nEquation(Derivative(a, c), 6*b/c**4)\n
If you specify multiple differentiation all at once the assumption\nis order of differentiation matters and the lhs will not be\nevaluated.
\n\n\n\n\n\n>>> diff(q,c,b)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
To overcome this specify the order of operations.
\n\n\n\n\n\n>>> diff(diff(q,c),b)\nEquation(Derivative(a, b), -2/c**3)\n
But the reverse order returns an unevaulated lhs (a may depend on b).
\n\n\n\n\n\n>>> diff(diff(q,b),c)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
Integration can only be performed on one side at a time.
\n\n\n\n\n\n>>> q=Eqn(a*c,b/c)\n>>> integrate(q,b,side='rhs')\nb**2/(2*c)\n>>> integrate(q,b,side='lhs')\na*b*c\n
Make a pretty statement of integration from an equation
\n\n\n\n\n\n>>> Eqn(Integral(q.lhs,b),integrate(q,b,side='rhs'))\nEquation(Integral(a*c, b), b**2/(2*c))\n
Integration of each side with respect to different variables
\n\n\n\n\n\n>>> q.dorhs.integrate(b).dolhs.integrate(a)\nEquation(a**2*c/2, b**2/(2*c))\n
Automatic solutions using sympy solvers. THIS IS EXPERIMENTAL. Please\nreport issues at https://github.com/gutow/Algebra_with_Sympy/issues.
\n\n\n\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.__init__", "kind": "function", "doc": "\n>>> tosolv = Eqn(a - b, c/a)\n>>> solve(tosolv,a)\nFiniteSet(Equation(a, b/2 - sqrt(b**2 + 4*c)/2), Equation(a, b/2 + sqrt(b**2 + 4*c)/2))\n>>> solve(tosolv, b)\nFiniteSet(Equation(b, (a**2 - c)/a))\n>>> solve(tosolv, c)\nFiniteSet(Equation(c, a**2 - a*b))\n
This is a class to hold parameters that control behavior of\nthe algebra_with_sympy package.
\n\nSettings
\n\nPrinting
\n\nIn interactive environments the default output of an equation is a\nhuman readable string with the two sides connected by an equals\nsign or a typeset equation with the two sides connected by an equals sign.\n
\n\nprint(Eqn)
orstr(Eqn)
will return this human readable text version of\nthe equation as well. This is consistent with python standards, but not\nsympy, wherestr()
is supposed to return something that can be\ncopy-pasted into code. If the equation has a declared name as ineq1 =\nEqn(a,b/c)
the name will be displayed to the right of the equation in\nparentheses (eg.a = b/c (eq1)
). Useprint(repr(Eqn))
instead of\nprint(Eqn)
orrepr(Eqn)
instead ofstr(Eqn)
to get a code\ncompatible version of the equation.You can adjust this behavior using some flags that impact output:
\n\n\n
\n\n- \n
algwsym_config.output.show_code
default isFalse
.- \n
algwsym_config.output.human_text
default isTrue
.- \n
algwsym_config.output.label
default isTrue
.- \n
algwsym_config.output.latex_as_equations
default isFalse
In interactive environments you can get both types of output by setting\nthe
\n\nalgwsym_config.output.show_code
flag. If this flag is true\ncalls tolatex
andstr
will also print an additional line \"code\nversion:repr(Eqn)
\". Thus in Jupyter you will get a line of typeset\nmathematics output preceded by the code version that can be copy-pasted.\nDefault isFalse
.A second flag
\n\nalgwsym_config.output.human_text
is useful in\ntext-based interactive environments such as command line python or\nipython. If this flag is truerepr
will returnstr
. Thus the human\nreadable text will be printed as the output of a line that is an\nexpression containing an equation.\nDefault isTrue
.Setting both of these flags to true in a command line or ipython\nenvironment will show both the code version and the human readable text.\nThese flags impact the behavior of the
\n\nprint(Eqn)
statement.The third flag
\n\nalgwsym_config.output.label
has a default value of\nTrue
. Setting this toFalse
suppresses the labeling of an equation\nwith its python name off to the right of the equation.The fourth flag
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.__init__", "kind": "function", "doc": "algwsym_config.output.latex_as_equations
has\na default value ofFalse
. Setting this toTrue
wraps\noutput as LaTex equations wrapping them in\\begin{equation}...\\end{\nequation}
.This holds settings that impact output.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.show_code", "kind": "variable", "doc": "If
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.human_text", "kind": "variable", "doc": "True
code versions of the equation expression will be\noutput in interactive environments. Default =False
.If
\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.solve_to_list", "kind": "variable", "doc": "True
the human readable equation expression will be\noutput in text interactive environments. Default =False
.If
\n\nTrue
the results of a call tosolve(...)
will return a\nPythonlist
rather than a SympyFiniteSet
. This recovers\nbehavior for versions before 0.11.0.Note: setting this
\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.latex_as_equations", "kind": "variable", "doc": "True
means that expressions within the\nreturned solutions will not be pretty-printed in Jupyter and\nIPython.If
\n\nTrue
any output that is returned as LaTex for\npretty-printing will be wrapped in the formal Latex for an\nequation. For example rather than\n\n$\\frac{a}{b}=c$\n
the output will be
\n\n\n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.label", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.label", "kind": "variable", "doc": "\n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics", "kind": "class", "doc": "\n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.__init__", "kind": "function", "doc": "\\begin{equation}\\frac{a}{b}=c\\end{equation}\n
This class holds settings for how numerical computation and\ninputs are handled.
\n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.integers_as_exact", "kind": "function", "doc": "This is a flag for informational purposes and interface\nconsistency. Changing the value will not change the behavior.
\n\nTo change the behavior call:
\n\n\n
\n\n- \n
unset_integers_as_exact()
to turn this feature off.- \n
set_integers_as_exact()
to turn this feature on (on by\ndefault).If set to
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.ip": {"fullname": "algebra_with_sympy.algebraic_equation.ip", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "ip", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.formatter": {"fullname": "algebra_with_sympy.algebraic_equation.formatter", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "formatter", "kind": "variable", "doc": "\n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.set_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "set_integers_as_exact", "kind": "function", "doc": "True
(the default) and if running in an\nIPython/Jupyter environment any number input without a decimal\nwill be interpreted as a sympy integer. Thus, fractions and\nrelated expressions will not evalute to floating point numbers,\nbut be maintained as exact expressions (e.g. 2/3 -> 2/3 not the\nfloat 0.6666...).This operation causes any number input without a decimal that is\npart of a Sympy expression to be interpreted as a sympy\ninteger, by using a custom preparser to cast integers within Sympy\nexpressions as Sympy integers (
\n\nInteger()
). It also sets the flag\nalgwsym_config.numerics.integers_as_exact = True
This is the default\nmode of algebra_with_sympy. To turn this off call\nunset_integers_as_exact()
.NOTE:
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.unset_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "unset_integers_as_exact", "kind": "function", "doc": "2/3
-->0.6666...
even when this is set, but2*x/3
-->\nInteger(2)/Integer(3)*x
if x is a sympy object. Ifx
is just a Python\nobject2*x/3
-->x*0.6666666666...
.This operation disables forcing of numbers input without\ndecimals being interpreted as sympy integers. Numbers input without a\ndecimal may be interpreted as floating point if they are part of an\nexpression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It\nalso sets the flag
\n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eqn", "kind": "variable", "doc": "\n", "default_value": "<class 'sympy.core.equation.Equation'>"}, "algebra_with_sympy.algebraic_equation.units": {"fullname": "algebra_with_sympy.algebraic_equation.units", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "units", "kind": "function", "doc": "algwsym_config.numerics.integers_as_exact = False
.\nCallset_integers_as_exact()
to avoid this conversion of rational\nfractions and related expressions to floating point. Algebra_with_sympy\nstarts withset_integers_as_exact()
enabled (\nalgwsym_config.numerics.integers_as_exact = True
).This operation declares the symbols to be positive values, so that sympy\nwill handle them properly when simplifying expressions containing units.\nUnits defined this way are just unit symbols. If you want units that are\naware of conversions see sympy.physics.units.
\n\nParameters
\n\n\n
\n\n- string names: a string containing a space separated list of\nsymbols to be treated as units.
\nReturns
\n\n\n\n", "signature": "(names):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solve": {"fullname": "algebra_with_sympy.algebraic_equation.solve", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solve", "kind": "function", "doc": "calls
\nname = symbols(name,\npositive=True)
in the interactive namespace for each symbol name.Override of sympy
\n\nsolve()
.If passed an expression and variable(s) to solve for it behaves\nalmost the same as normal solve with
\n\ndict = True
, except that solutions\nare wrapped in a FiniteSet() to guarantee that the output will be pretty\nprinted in Jupyter like environments.If passed an equation or equations it returns solutions as a\n
\n\nFiniteSet()
of solutions, where each solution is represented by an\nequation or set of equations.To get a Python
\n\nlist
of solutions (pre-0.11.0 behavior) rather than a\nFiniteSet
issue the commandalgwsym_config.output.solve_to_list = True
.\nThis also prevents pretty-printing in IPython and Jupyter.Examples
\n\n\n\n\n\n>>> a, b, c, x, y = symbols('a b c x y', real = True)\n>>> import sys\n>>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.\n>>> eq1 = Eqn(abs(2*x+y),3)\n>>> eq2 = Eqn(abs(x + 2*y),3)\n>>> B = solve((eq1,eq2))\n
Default human readable output on command line
\n\n\n\n\n\n>>> B\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
To get raw output turn off by setting
\n\n\n\n\n\n>>> algwsym_config.output.human_text=False\n>>> B\nFiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n
Pre-0.11.0 behavior where a python list of solutions is returned
\n\n\n\n\n\n>>> algwsym_config.output.solve_to_list = True\n>>> solve((eq1,eq2))\n[[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]\n>>> algwsym_config.output.solve_to_list = False # reset to default\n
\n\n
algwsym_config.output.human_text = True
with\nalgwsym_config.output.how_code=True
shows both.\nIn Jupyter-like environmentsshow_code=True
yields the Raw output and\na typeset version. Ifshow_code=False
(the default) only the\ntypeset version is shown in Jupyter.\n\n", "signature": "(f, *symbols, **flags):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solveset": {"fullname": "algebra_with_sympy.algebraic_equation.solveset", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solveset", "kind": "function", "doc": "\n>>> algwsym_config.output.show_code=True\n>>> algwsym_config.output.human_text=True\n>>> B\nCode version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
Very experimental override of sympy solveset, which we hope will replace\nsolve. Much is not working. It is not clear how to input a system of\nequations unless you directly select
\n", "signature": "(f, symbols, domain=Complexes):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality": {"fullname": "algebra_with_sympy.algebraic_equation.Equality", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality", "kind": "class", "doc": "linsolve
, etc...Extension of Equality class to include the ability to convert it to an\nEquation.
\n", "bases": "sympy.core.relational.Equality"}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Equation", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Equation", "kind": "function", "doc": "Return: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Eqn", "kind": "function", "doc": "Synonym for to_Equation.\nReturn: recasts the Equality as an Equation.
\n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.default_assumptions", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.default_assumptions", "kind": "variable", "doc": "\n", "default_value": "{}"}, "algebra_with_sympy.algebraic_equation.Eq": {"fullname": "algebra_with_sympy.algebraic_equation.Eq", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eq", "kind": "variable", "doc": "\n", "default_value": "<class 'algebra_with_sympy.algebraic_equation.Equality'>"}, "algebra_with_sympy.algebraic_equation.abs": {"fullname": "algebra_with_sympy.algebraic_equation.abs", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "abs", "kind": "variable", "doc": "\n", "default_value": "Abs"}, "algebra_with_sympy.preparser": {"fullname": "algebra_with_sympy.preparser", "modulename": "algebra_with_sympy.preparser", "kind": "module", "doc": "\n"}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"fullname": "algebra_with_sympy.preparser.algebra_with_sympy_preparser", "modulename": "algebra_with_sympy.preparser", "qualname": "algebra_with_sympy_preparser", "kind": "function", "doc": "In IPython compatible environments (Jupyter, IPython, etc...) this supports\na special compact input method for equations.
\n\nThe syntax supported is
\n\nequation_name =@ equation.lhs = equation.rhs
,\nwhereequation_name
is a valid Python name that can be used to refer to\nthe equation later.equation.lhs
is the left-hand side of the equation\nandequation.rhs
is the right-hand side of the equation. Each side of the\nequation must parse into a valid Sympy expression.Note: This does not support line continuation. Long equations should be\nbuilt by combining expressions using names short enough to do this on one\nline. The alternative is to use
\n\nequation_name = Eqn(long ...\nexpressions ... with ... multiple ... lines)
.Note: If the
\n\nequation_name
is omitted the equation will be formed,\nbut it will not be assigned to a name that can be used to refer to it\nlater. You may be able to access it through one of the special IPython\nunderscore names. This is not recommended.THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT\nBEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED\nDIRECTLY BY A USER
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"fullname": "algebra_with_sympy.preparser.toIntegerInSympyExpr", "modulename": "algebra_with_sympy.preparser", "qualname": "toIntegerInSympyExpr", "kind": "function", "doc": "This function takes a string of valid Python and wraps integers within Sympy expressions\nin
\n", "signature": "(string):", "funcdef": "def"}, "algebra_with_sympy.preparser.integers_as_exact": {"fullname": "algebra_with_sympy.preparser.integers_as_exact", "modulename": "algebra_with_sympy.preparser", "qualname": "integers_as_exact", "kind": "function", "doc": "sympy.Integer()
to make them Sympy integers rather than PythonInt()
. The\nadvantage of this is that calculations withInteger()
types can be exact. This function\nis careful not to wrapInt()
types that are not part of Sympy expressions, making it\npossible for this functionality to exist with operations (e.g. array and numpy indexing)\nthat are not compatible with theInteger()
type.This preparser uses
\n\nsympy.interactive.session.int_to_Integer
to\nconvert numbers without decimal points into sympy integers so that math\non them will be exact rather than defaulting to floating point. This\nshould not be called directly by the user. It is plugged into the\nIPython preparsing sequence when the feature is requested. The default for\nAlgebra_with_sympy is to use this preparser. This can be turned on and\noff using the Algebra_with_sympy functions:\n
\n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.version": {"fullname": "algebra_with_sympy.version", "modulename": "algebra_with_sympy.version", "kind": "module", "doc": "\n"}}, "docInfo": {"algebra_with_sympy": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3534}, "algebra_with_sympy.proper_sympy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 4002}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 530}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 65}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 50}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 15}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 126}, "algebra_with_sympy.algebraic_equation.ip": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.formatter": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 133}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 102}, "algebra_with_sympy.algebraic_equation.Eqn": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.units": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 100}, "algebra_with_sympy.algebraic_equation.solve": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 834}, "algebra_with_sympy.algebraic_equation.solveset": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 38}, "algebra_with_sympy.algebraic_equation.Equality": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 17}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.Eq": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.abs": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 229}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 97}, "algebra_with_sympy.preparser.integers_as_exact": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "algebra_with_sympy.version": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 34, "save": true}, "index": {"qualname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.version": {"tf": 1}}, "df": 1}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 3, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}}, "df": 1}}}}, "x": {"2": {"7": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.units": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 3.1622776601683795}}, "df": 14, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "doc": {"root": {"0": {"0": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"0": {"6": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 7}, "1": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.47213595499958}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "2": {"0": {"2": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "/": {"3": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "/": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2}, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "3": {"9": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}}, "df": 4}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "5": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "9": {"3": {"3": {"4": {"3": {"2": {"5": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 31.448370387032774}, "algebra_with_sympy.proper_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 50.049975024968795}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 11}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 5.744562646538029}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 20.149441679609886}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 5.830951894845301}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 4.242640687119285}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 4.69041575982343}, "algebra_with_sympy.version": {"tf": 1.7320508075688772}}, "df": 34, "a": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "docs": {"algebra_with_sympy": {"tf": 6.164414002968976}, "algebra_with_sympy.algebraic_equation": {"tf": 7.483314773547883}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 12, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "d": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 7}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}}, "df": 1}, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "q": {"1": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}, "4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "5": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 8.366600265340756}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.605551275463989}}, "df": 11, "s": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 7}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 5.656854249492381}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 6.244997998398398}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 13, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 5, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "n": {"docs": {"algebra_with_sympy": {"tf": 7}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 13, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 4}, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 5.196152422706632}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 11, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 7, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.4641016151377544}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 7.211102550927978}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}}, "df": 13, "f": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "f": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 12, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.605551275463989}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 5.385164807134504}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3}}, "df": 12}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 14}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}, "e": {"docs": {"algebra_with_sympy": {"tf": 10.198039027185569}, "algebra_with_sympy.algebraic_equation": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.7416573867739413}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 18, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "m": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 8}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 6.708203932499369}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": null}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "\\": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 16.522711641858304}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 6.708203932499369}}, "df": 3}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}}, "df": 1, "y": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.47213595499958}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "r": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "#": {"2": {"1": {"3": {"3": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1, "p": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}, "*": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 6}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}}, "df": 3, "y": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}, "e": {"docs": {"algebra_with_sympy": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.6457513110645907}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 6}, "g": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "u": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 2}, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2.23606797749979}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "o": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}}, "*": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}, "k": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 4, "*": {"0": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "^": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "docs": {}, "df": 0}}, "q": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4.47213595499958}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/version.py b/version.py index f5fc7cf..6df8ed0 100644 --- a/version.py +++ b/version.py @@ -1 +1 @@ -__version__ = '1.1.0rc1' \ No newline at end of file +__version__ = '1.1.0' \ No newline at end of file- \n
set_integers_as_exact()
- \n
unset_integers_as_exact()
\nNOTE: This option does not work in plain vanilla Python sessions. You\nmust be running in an IPython environment (Jupyter, Notebook, Colab,\netc...).