From 32d171ed992d9aace595c5fe225ca0eceb0c0c30 Mon Sep 17 00:00:00 2001 From: gutow Date: Mon, 22 Jul 2024 10:48:00 -0500 Subject: [PATCH] Doc updates for 1.1.0 --- Development Notes.md | 11 +- ReadMe.md | 14 +- docs/algebra_with_sympy.html | 144 +- .../algebraic_equation.html | 1275 +++++++++-------- docs/algebra_with_sympy/preparser.html | 466 ++++-- docs/algebra_with_sympy/version.html | 4 +- docs/search.js | 2 +- version.py | 2 +- 8 files changed, 1114 insertions(+), 804 deletions(-) diff --git a/Development Notes.md b/Development Notes.md index 63d1305..ad0700f 100644 --- a/Development Notes.md +++ b/Development Notes.md @@ -4,6 +4,7 @@ [Build PyPi Package](#building-pypi-package)| ## General Notes + * TODOs * Test collect when there isn't an available _eval_collect (not sure how to get there). @@ -18,7 +19,7 @@ input engine. ## Constructing the Documentation - + 1. Make sure pdoc is installed and updated in the virtual environment `pip install -U pdoc`. 2. Update any `.md` files included in `_init_.py`. @@ -33,12 +34,12 @@ pdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg where `X.X.X` is the version number. ### Tasks for Documentation + * Readme.md & Development Notes.md - * Hard code anchors so that navigation links work on pypi page. * Use absolute path to github pages for more examples. ## Running Tests - + 1. Install updated pytest in the virtual environment: ``` pipenv shell @@ -58,7 +59,7 @@ You can run all the tests using the dotests script: `./dotests.sh`. raw strings are being passed with specialized LaTex escaped characters. ## Building PyPi package - + 1. Make sure to update the version number in setup.py first. 1. Install updated setuptools and twine in the virtual environment: ``` @@ -88,7 +89,7 @@ raw strings are being passed with specialized LaTex escaped characters. environment. ### Releasing on PyPi - + Proceed only if testing of the build is successful. 1. Double check the version number in version.py. diff --git a/ReadMe.md b/ReadMe.md index 5b8106b..3d10eaf 100644 --- a/ReadMe.md +++ b/ReadMe.md @@ -11,6 +11,7 @@ ## [Website/Documentation (including API)](https://gutow.github.io/Algebra_with_Sympy/) ## Introduction + This tool defines relations that all high school and college students would recognize as mathematical equations. @@ -69,7 +70,7 @@ Even if you do not use the `Equation` class, there are some convenience tools and defaults that will probably make interactive use of SymPy in Jupyter/IPython environments easier: -* By default, all numbers _in Sympy expressions_ without decimal points are +* By default, all numbers *in Sympy expressions* without decimal points are interpreted as integers (e.g. `2/3*x`, where x is a sympy symbol, -> `2*x/3` not `x*0.6666...`, but if x is just a plain Python object then `2/3*x` -> `x*0.66666...`). This can be turned off with `unset_integers_as_exact()`, @@ -84,6 +85,7 @@ Jupyter/IPython environments easier: Outputs](#controlling-the-format-of-interactive-outputs). ## Controlling the Format of Interactive Outputs + * These controls impact all Sympy objects and the `Equation` class. * **In graphical environments (Jupyter)** you will get rendered Latex such as $\frac{a}{b} = \frac{c}{d}$ or $e^{\frac{-x^2}{\sigma^2}}$. To also see the @@ -124,7 +126,7 @@ $\frac{a}{b} = \frac{c}{d}$ or $e^{\frac{-x^2}{\sigma^2}}$. To also see the solutions in the order the solve for variables were input. ## Setup/Installation - + 1. Use pip to install in your python environment: `pip install -U Algebra-with-SymPy` 2. To use in a running python session issue @@ -144,18 +146,18 @@ algwsym_config = spa.algwsym_config ``` ## Try in binder - + [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/gutow/Algebra_with_Sympy.git/master?labpath=Demonstration+of+equation+class.ipynb) ## Issues or Comments - + * Issues and bug reports should be [filed on github](https://github.com/gutow/Algebra_with_Sympy/issues). * Comments, questions, show and tell, etc. should go in the [project discussions](https://github.com/gutow/Algebra_with_Sympy/discussions). ## Change Log - + * 1.1.0 (July 21, 2024) * Setting integers as exact (`set_integers_as_exact()`, the default) now only sets integers as exact within Sympy and Algebra_with_Sympy @@ -271,7 +273,7 @@ github](https://github.com/gutow/Algebra_with_Sympy/issues). [PR#21333](https://github.com/sympy/sympy/pull/21333). ## [licensed under GNU V3 license](https://gnu.org/licenses) - + This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or diff --git a/docs/algebra_with_sympy.html b/docs/algebra_with_sympy.html index 2fed7bb..44be50c 100644 --- a/docs/algebra_with_sympy.html +++ b/docs/algebra_with_sympy.html @@ -78,12 +78,12 @@

Submodules

API Documentation

- + built with pdoc

Introduction

+

+

This tool defines relations that all high school and college students would recognize as mathematical equations. They consist of a left hand side (lhs) and a right hand side (rhs) connected by @@ -168,10 +170,12 @@

Convenience Jupyter/IPython environments easier:

489 490# Numerics controls 491def set_integers_as_exact(): -492 """This operation uses `sympy.interactive.session.int_to_Integer`, which -493 causes any number input without a decimal to be interpreted as a sympy -494 integer, to pre-parse input cells. It also sets the flag -495 `algwsym_config.numerics.integers_as_exact = True` This is the default -496 mode of algebra_with_sympy. To turn this off call -497 `unset_integers_as_exact()`. -498 """ -499 ip = False -500 try: -501 from IPython import get_ipython -502 ip = True -503 except ModuleNotFoundError: -504 ip = False -505 if ip: -506 if get_ipython(): -507 get_ipython().input_transformers_post.append(integers_as_exact) -508 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) -509 if algwsym_config: -510 algwsym_config.numerics.integers_as_exact = True -511 else: -512 raise ValueError("The algwsym_config object does not exist.") -513 return -514 -515def unset_integers_as_exact(): -516 """This operation disables forcing of numbers input without -517 decimals being interpreted as sympy integers. Numbers input without a -518 decimal may be interpreted as floating point if they are part of an -519 expression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It -520 also sets the flag `algwsym_config.numerics.integers_as_exact = False`. -521 Call `set_integers_as_exact()` to avoid this conversion of rational -522 fractions and related expressions to floating point. Algebra_with_sympy -523 starts with `set_integers_as_exact()` enabled ( -524 `algwsym_config.numerics.integers_as_exact = True`). -525 """ -526 ip = False -527 try: -528 from IPython import get_ipython -529 ip = True -530 except ModuleNotFoundError: -531 ip = False -532 if ip: -533 if get_ipython(): -534 pre = get_ipython().input_transformers_post -535 # The below looks excessively complicated, but more reliably finds the -536 # transformer to remove across varying IPython environments. -537 for k in pre: -538 if "integers_as_exact" in k.__name__: -539 pre.remove(k) -540 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) -541 if algwsym_config: -542 algwsym_config.numerics.integers_as_exact = False -543 else: -544 raise ValueError("The algwsym_config object does not exist.") -545 -546 return -547 -548Eqn = Equation -549if ip and "text/latex" not in formatter.active_types: -550 old = formatter.formatters['text/plain'].for_type(Eqn, -551 __command_line_printing__) -552 # print("For type Equation overriding plain text formatter = " + str(old)) -553 -554def units(names): -555 """ -556 This operation declares the symbols to be positive values, so that sympy -557 will handle them properly when simplifying expressions containing units. -558 Units defined this way are just unit symbols. If you want units that are -559 aware of conversions see sympy.physics.units. -560 -561 -562 :param string names: a string containing a space separated list of -563 symbols to be treated as units. -564 -565 :return string list of defined units: calls `name = symbols(name, -566 positive=True)` in the interactive namespace for each symbol name. -567 """ -568 from sympy.core.symbol import symbols -569 #import __main__ as shell -570 user_namespace = None -571 try: -572 from IPython import get_ipython -573 if get_ipython(): -574 user_namespace = get_ipython().user_ns -575 except ModuleNotFoundError: -576 pass -577 syms = names.split(' ') -578 retstr = '' -579 -580 if user_namespace==None: -581 import sys -582 frame_num = 0 -583 frame_name = None -584 while frame_name != '__main__' and frame_num < 50: -585 user_namespace = sys._getframe(frame_num).f_globals -586 frame_num +=1 -587 frame_name = user_namespace['__name__'] -588 retstr +='(' -589 for k in syms: -590 user_namespace[k] = symbols(k, positive = True) -591 retstr += k + ',' -592 retstr = retstr[:-1] + ')' -593 return retstr -594 -595 -596def solve(f, *symbols, **flags): -597 """ -598 Override of sympy `solve()`. +492 """This operation causes any number input without a decimal that is +493 part of a Sympy expression to be interpreted as a sympy +494 integer, by using a custom preparser to cast integers within Sympy +495 expressions as Sympy integers (`Integer()`). It also sets the flag +496 `algwsym_config.numerics.integers_as_exact = True` This is the default +497 mode of algebra_with_sympy. To turn this off call +498 `unset_integers_as_exact()`. +499 +500 NOTE: `2/3` --> `0.6666...` even when this is set, but `2*x/3` --> +501 `Integer(2)/Integer(3)*x` if x is a sympy object. If `x` is just a Python +502 object `2*x/3` --> `x*0.6666666666...`. +503 """ +504 ip = False +505 try: +506 from IPython import get_ipython +507 ip = True +508 except ModuleNotFoundError: +509 ip = False +510 if ip: +511 if get_ipython(): +512 get_ipython().input_transformers_post.append(integers_as_exact) +513 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) +514 if algwsym_config: +515 algwsym_config.numerics.integers_as_exact = True +516 else: +517 raise ValueError("The algwsym_config object does not exist.") +518 return +519 +520def unset_integers_as_exact(): +521 """This operation disables forcing of numbers input without +522 decimals being interpreted as sympy integers. Numbers input without a +523 decimal may be interpreted as floating point if they are part of an +524 expression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It +525 also sets the flag `algwsym_config.numerics.integers_as_exact = False`. +526 Call `set_integers_as_exact()` to avoid this conversion of rational +527 fractions and related expressions to floating point. Algebra_with_sympy +528 starts with `set_integers_as_exact()` enabled ( +529 `algwsym_config.numerics.integers_as_exact = True`). +530 """ +531 ip = False +532 try: +533 from IPython import get_ipython +534 ip = True +535 except ModuleNotFoundError: +536 ip = False +537 if ip: +538 if get_ipython(): +539 pre = get_ipython().input_transformers_post +540 # The below looks excessively complicated, but more reliably finds the +541 # transformer to remove across varying IPython environments. +542 for k in pre: +543 if "integers_as_exact" in k.__name__: +544 pre.remove(k) +545 algwsym_config = get_ipython().user_ns.get("algwsym_config", False) +546 if algwsym_config: +547 algwsym_config.numerics.integers_as_exact = False +548 else: +549 raise ValueError("The algwsym_config object does not exist.") +550 +551 return +552 +553Eqn = Equation +554if ip and "text/latex" not in formatter.active_types: +555 old = formatter.formatters['text/plain'].for_type(Eqn, +556 __command_line_printing__) +557 # print("For type Equation overriding plain text formatter = " + str(old)) +558 +559def units(names): +560 """ +561 This operation declares the symbols to be positive values, so that sympy +562 will handle them properly when simplifying expressions containing units. +563 Units defined this way are just unit symbols. If you want units that are +564 aware of conversions see sympy.physics.units. +565 +566 +567 :param string names: a string containing a space separated list of +568 symbols to be treated as units. +569 +570 :return string list of defined units: calls `name = symbols(name, +571 positive=True)` in the interactive namespace for each symbol name. +572 """ +573 from sympy.core.symbol import symbols +574 #import __main__ as shell +575 user_namespace = None +576 try: +577 from IPython import get_ipython +578 if get_ipython(): +579 user_namespace = get_ipython().user_ns +580 except ModuleNotFoundError: +581 pass +582 syms = names.split(' ') +583 retstr = '' +584 +585 if user_namespace==None: +586 import sys +587 frame_num = 0 +588 frame_name = None +589 while frame_name != '__main__' and frame_num < 50: +590 user_namespace = sys._getframe(frame_num).f_globals +591 frame_num +=1 +592 frame_name = user_namespace['__name__'] +593 retstr +='(' +594 for k in syms: +595 user_namespace[k] = symbols(k, positive = True) +596 retstr += k + ',' +597 retstr = retstr[:-1] + ')' +598 return retstr 599 -600 If passed an expression and variable(s) to solve for it behaves -601 almost the same as normal solve with `dict = True`, except that solutions -602 are wrapped in a FiniteSet() to guarantee that the output will be pretty -603 printed in Jupyter like environments. +600 +601def solve(f, *symbols, **flags): +602 """ +603 Override of sympy `solve()`. 604 -605 If passed an equation or equations it returns solutions as a -606 `FiniteSet()` of solutions, where each solution is represented by an -607 equation or set of equations. -608 -609 To get a Python `list` of solutions (pre-0.11.0 behavior) rather than a -610 `FiniteSet` issue the command `algwsym_config.output.solve_to_list = True`. -611 This also prevents pretty-printing in IPython and Jupyter. -612 -613 Examples -614 -------- -615 >>> a, b, c, x, y = symbols('a b c x y', real = True) -616 >>> import sys -617 >>> sys.displayhook = __command_line_printing__ # set by default on normal initialization. -618 >>> eq1 = Eqn(abs(2*x+y),3) -619 >>> eq2 = Eqn(abs(x + 2*y),3) -620 >>> B = solve((eq1,eq2)) -621 -622 Default human readable output on command line -623 >>> B -624 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} -625 -626 To get raw output turn off by setting -627 >>> algwsym_config.output.human_text=False +605 If passed an expression and variable(s) to solve for it behaves +606 almost the same as normal solve with `dict = True`, except that solutions +607 are wrapped in a FiniteSet() to guarantee that the output will be pretty +608 printed in Jupyter like environments. +609 +610 If passed an equation or equations it returns solutions as a +611 `FiniteSet()` of solutions, where each solution is represented by an +612 equation or set of equations. +613 +614 To get a Python `list` of solutions (pre-0.11.0 behavior) rather than a +615 `FiniteSet` issue the command `algwsym_config.output.solve_to_list = True`. +616 This also prevents pretty-printing in IPython and Jupyter. +617 +618 Examples +619 -------- +620 >>> a, b, c, x, y = symbols('a b c x y', real = True) +621 >>> import sys +622 >>> sys.displayhook = __command_line_printing__ # set by default on normal initialization. +623 >>> eq1 = Eqn(abs(2*x+y),3) +624 >>> eq2 = Eqn(abs(x + 2*y),3) +625 >>> B = solve((eq1,eq2)) +626 +627 Default human readable output on command line 628 >>> B -629 FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) +629 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} 630 -631 Pre-0.11.0 behavior where a python list of solutions is returned -632 >>> algwsym_config.output.solve_to_list = True -633 >>> solve((eq1,eq2)) -634 [[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]] -635 >>> algwsym_config.output.solve_to_list = False # reset to default -636 -637 `algwsym_config.output.human_text = True` with -638 `algwsym_config.output.how_code=True` shows both. -639 In Jupyter-like environments `show_code=True` yields the Raw output and -640 a typeset version. If `show_code=False` (the default) only the -641 typeset version is shown in Jupyter. -642 >>> algwsym_config.output.show_code=True -643 >>> algwsym_config.output.human_text=True -644 >>> B -645 Code version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) -646 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} -647 """ -648 from sympy.solvers.solvers import solve -649 from sympy.sets.sets import FiniteSet -650 newf =[] -651 solns = [] -652 displaysolns = [] -653 contains_eqn = False -654 if hasattr(f,'__iter__'): -655 for k in f: -656 if isinstance(k, Equation): -657 newf.append(k.lhs-k.rhs) -658 contains_eqn = True -659 else: -660 newf.append(k) -661 else: -662 if isinstance(f, Equation): -663 newf.append(f.lhs - f.rhs) -664 contains_eqn = True -665 else: -666 newf.append(f) -667 flags['dict'] = True -668 result = solve(newf, *symbols, **flags) -669 if len(symbols) == 1 and hasattr(symbols[0], "__iter__"): -670 symbols = symbols[0] -671 if contains_eqn: -672 if len(result[0]) == 1: -673 for k in result: -674 for key in k.keys(): -675 val = k[key] -676 tempeqn = Eqn(key, val) -677 solns.append(tempeqn) -678 if len(solns) == len(symbols): -679 # sort according to the user-provided symbols -680 solns = sorted(solns, key=lambda x: symbols.index(x.lhs)) -681 else: -682 for k in result: -683 solnset = [] -684 for key in k.keys(): -685 val = k[key] -686 tempeqn = Eqn(key, val) -687 solnset.append(tempeqn) -688 if not algwsym_config.output.solve_to_list: -689 solnset = FiniteSet(*solnset) -690 else: -691 if len(solnset) == len(symbols): -692 # sort according to the user-provided symbols -693 solnset = sorted(solnset, key=lambda x: symbols.index(x.lhs)) -694 solns.append(solnset) -695 else: -696 solns = result -697 if algwsym_config.output.solve_to_list: -698 if len(solns) == 1 and hasattr(solns[0], "__iter__"): -699 # no need to wrap a list of a single element inside another list -700 return solns[0] -701 return solns -702 else: -703 if len(solns) == 1: -704 # do not wrap a singleton in FiniteSet if it already is -705 for k in solns: -706 if isinstance(k, FiniteSet): -707 return k -708 return FiniteSet(*solns) -709 -710def solveset(f, symbols, domain=sympy.Complexes): -711 """ -712 Very experimental override of sympy solveset, which we hope will replace -713 solve. Much is not working. It is not clear how to input a system of -714 equations unless you directly select `linsolve`, etc... -715 """ -716 from sympy.solvers import solveset as solve -717 newf = [] -718 solns = [] -719 displaysolns = [] -720 contains_eqn = False -721 if hasattr(f, '__iter__'): -722 for k in f: -723 if isinstance(k, Equation): -724 newf.append(k.lhs - k.rhs) -725 contains_eqn = True -726 else: -727 newf.append(k) -728 else: -729 if isinstance(f, Equation): -730 newf.append(f.lhs - f.rhs) -731 contains_eqn = True -732 else: -733 newf.append(f) -734 result = solve(*newf, symbols, domain=domain) -735 # if contains_eqn: -736 # if len(result[0]) == 1: -737 # for k in result: -738 # for key in k.keys(): -739 # val = k[key] -740 # tempeqn = Eqn(key, val) -741 # solns.append(tempeqn) -742 # display(*solns) -743 # else: -744 # for k in result: -745 # solnset = [] -746 # displayset = [] -747 # for key in k.keys(): -748 # val = k[key] -749 # tempeqn = Eqn(key, val) -750 # solnset.append(tempeqn) -751 # if algwsym_config.output.show_solve_output: -752 # displayset.append(tempeqn) -753 # if algwsym_config.output.show_solve_output: -754 # displayset.append('-----') -755 # solns.append(solnset) -756 # if algwsym_config.output.show_solve_output: -757 # for k in displayset: -758 # displaysolns.append(k) -759 # if algwsym_config.output.show_solve_output: -760 # display(*displaysolns) -761 # else: -762 solns = result -763 return solns -764 -765 -766class Equality(Equality): -767 """ -768 Extension of Equality class to include the ability to convert it to an -769 Equation. -770 """ -771 def to_Equation(self): -772 """ -773 Return: recasts the Equality as an Equation. -774 """ -775 return Equation(self.lhs,self.rhs) -776 -777 def to_Eqn(self): -778 """ -779 Synonym for to_Equation. -780 Return: recasts the Equality as an Equation. -781 """ -782 return self.to_Equation() -783 -784Eq = Equality -785 -786def __FiniteSet__repr__override__(self): -787 """Override of the `FiniteSet.__repr__(self)` to overcome sympy's -788 inconsistent wrapping of Finite Sets which prevents reliable use of -789 copy and paste of the code representation. -790 """ -791 insidestr = "" -792 for k in self.args: -793 insidestr += k.__repr__() +', ' -794 insidestr = insidestr[:-2] -795 reprstr = "FiniteSet("+ insidestr + ")" -796 return reprstr -797 -798sympy.sets.FiniteSet.__repr__ = __FiniteSet__repr__override__ -799 -800def __FiniteSet__str__override__(self): -801 """Override of the `FiniteSet.__str__(self)` to overcome sympy's -802 inconsistent wrapping of Finite Sets which prevents reliable use of -803 copy and paste of the code representation. -804 """ -805 insidestr = "" -806 for k in self.args: -807 insidestr += str(k) + ', ' -808 insidestr = insidestr[:-2] -809 strrep = "{"+ insidestr + "}" -810 return strrep -811 -812sympy.sets.FiniteSet.__str__ = __FiniteSet__str__override__ -813 -814# Redirect python abs() to Abs() -815abs = Abs +631 To get raw output turn off by setting +632 >>> algwsym_config.output.human_text=False +633 >>> B +634 FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) +635 +636 Pre-0.11.0 behavior where a python list of solutions is returned +637 >>> algwsym_config.output.solve_to_list = True +638 >>> solve((eq1,eq2)) +639 [[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]] +640 >>> algwsym_config.output.solve_to_list = False # reset to default +641 +642 `algwsym_config.output.human_text = True` with +643 `algwsym_config.output.how_code=True` shows both. +644 In Jupyter-like environments `show_code=True` yields the Raw output and +645 a typeset version. If `show_code=False` (the default) only the +646 typeset version is shown in Jupyter. +647 >>> algwsym_config.output.show_code=True +648 >>> algwsym_config.output.human_text=True +649 >>> B +650 Code version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3))) +651 {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}} +652 """ +653 from sympy.solvers.solvers import solve +654 from sympy.sets.sets import FiniteSet +655 newf =[] +656 solns = [] +657 displaysolns = [] +658 contains_eqn = False +659 if hasattr(f,'__iter__'): +660 for k in f: +661 if isinstance(k, Equation): +662 newf.append(k.lhs-k.rhs) +663 contains_eqn = True +664 else: +665 newf.append(k) +666 else: +667 if isinstance(f, Equation): +668 newf.append(f.lhs - f.rhs) +669 contains_eqn = True +670 else: +671 newf.append(f) +672 flags['dict'] = True +673 result = solve(newf, *symbols, **flags) +674 if len(symbols) == 1 and hasattr(symbols[0], "__iter__"): +675 symbols = symbols[0] +676 if contains_eqn: +677 if len(result[0]) == 1: +678 for k in result: +679 for key in k.keys(): +680 val = k[key] +681 tempeqn = Eqn(key, val) +682 solns.append(tempeqn) +683 if len(solns) == len(symbols): +684 # sort according to the user-provided symbols +685 solns = sorted(solns, key=lambda x: symbols.index(x.lhs)) +686 else: +687 for k in result: +688 solnset = [] +689 for key in k.keys(): +690 val = k[key] +691 tempeqn = Eqn(key, val) +692 solnset.append(tempeqn) +693 if not algwsym_config.output.solve_to_list: +694 solnset = FiniteSet(*solnset) +695 else: +696 if len(solnset) == len(symbols): +697 # sort according to the user-provided symbols +698 solnset = sorted(solnset, key=lambda x: symbols.index(x.lhs)) +699 solns.append(solnset) +700 else: +701 solns = result +702 if algwsym_config.output.solve_to_list: +703 if len(solns) == 1 and hasattr(solns[0], "__iter__"): +704 # no need to wrap a list of a single element inside another list +705 return solns[0] +706 return solns +707 else: +708 if len(solns) == 1: +709 # do not wrap a singleton in FiniteSet if it already is +710 for k in solns: +711 if isinstance(k, FiniteSet): +712 return k +713 return FiniteSet(*solns) +714 +715def solveset(f, symbols, domain=sympy.Complexes): +716 """ +717 Very experimental override of sympy solveset, which we hope will replace +718 solve. Much is not working. It is not clear how to input a system of +719 equations unless you directly select `linsolve`, etc... +720 """ +721 from sympy.solvers import solveset as solve +722 newf = [] +723 solns = [] +724 displaysolns = [] +725 contains_eqn = False +726 if hasattr(f, '__iter__'): +727 for k in f: +728 if isinstance(k, Equation): +729 newf.append(k.lhs - k.rhs) +730 contains_eqn = True +731 else: +732 newf.append(k) +733 else: +734 if isinstance(f, Equation): +735 newf.append(f.lhs - f.rhs) +736 contains_eqn = True +737 else: +738 newf.append(f) +739 result = solve(*newf, symbols, domain=domain) +740 # if contains_eqn: +741 # if len(result[0]) == 1: +742 # for k in result: +743 # for key in k.keys(): +744 # val = k[key] +745 # tempeqn = Eqn(key, val) +746 # solns.append(tempeqn) +747 # display(*solns) +748 # else: +749 # for k in result: +750 # solnset = [] +751 # displayset = [] +752 # for key in k.keys(): +753 # val = k[key] +754 # tempeqn = Eqn(key, val) +755 # solnset.append(tempeqn) +756 # if algwsym_config.output.show_solve_output: +757 # displayset.append(tempeqn) +758 # if algwsym_config.output.show_solve_output: +759 # displayset.append('-----') +760 # solns.append(solnset) +761 # if algwsym_config.output.show_solve_output: +762 # for k in displayset: +763 # displaysolns.append(k) +764 # if algwsym_config.output.show_solve_output: +765 # display(*displaysolns) +766 # else: +767 solns = result +768 return solns +769 +770 +771class Equality(Equality): +772 """ +773 Extension of Equality class to include the ability to convert it to an +774 Equation. +775 """ +776 def to_Equation(self): +777 """ +778 Return: recasts the Equality as an Equation. +779 """ +780 return Equation(self.lhs,self.rhs) +781 +782 def to_Eqn(self): +783 """ +784 Synonym for to_Equation. +785 Return: recasts the Equality as an Equation. +786 """ +787 return self.to_Equation() +788 +789Eq = Equality +790 +791def __FiniteSet__repr__override__(self): +792 """Override of the `FiniteSet.__repr__(self)` to overcome sympy's +793 inconsistent wrapping of Finite Sets which prevents reliable use of +794 copy and paste of the code representation. +795 """ +796 insidestr = "" +797 for k in self.args: +798 insidestr += k.__repr__() +', ' +799 insidestr = insidestr[:-2] +800 reprstr = "FiniteSet("+ insidestr + ")" +801 return reprstr +802 +803sympy.sets.FiniteSet.__repr__ = __FiniteSet__repr__override__ +804 +805def __FiniteSet__str__override__(self): +806 """Override of the `FiniteSet.__str__(self)` to overcome sympy's +807 inconsistent wrapping of Finite Sets which prevents reliable use of +808 copy and paste of the code representation. +809 """ +810 insidestr = "" +811 for k in self.args: +812 insidestr += str(k) + ', ' +813 insidestr = insidestr[:-2] +814 strrep = "{"+ insidestr + "}" +815 return strrep +816 +817sympy.sets.FiniteSet.__str__ = __FiniteSet__str__override__ +818 +819# Redirect python abs() to Abs() +820abs = Abs @@ -1922,37 +1927,47 @@

Printing

492def set_integers_as_exact():
-493    """This operation uses `sympy.interactive.session.int_to_Integer`, which
-494    causes any number input without a decimal to be interpreted as a sympy
-495    integer, to pre-parse input cells. It also sets the flag
-496    `algwsym_config.numerics.integers_as_exact = True` This is the default
-497    mode of algebra_with_sympy. To turn this off call
-498    `unset_integers_as_exact()`.
-499    """
-500    ip = False
-501    try:
-502        from IPython import get_ipython
-503        ip = True
-504    except ModuleNotFoundError:
-505        ip = False
-506    if ip:
-507        if get_ipython():
-508            get_ipython().input_transformers_post.append(integers_as_exact)
-509            algwsym_config = get_ipython().user_ns.get("algwsym_config", False)
-510            if algwsym_config:
-511                algwsym_config.numerics.integers_as_exact = True
-512            else:
-513                raise ValueError("The algwsym_config object does not exist.")
-514    return
+493    """This operation causes any number input without a decimal that is
+494    part of a Sympy expression to be interpreted as a sympy
+495    integer, by using a custom preparser to cast integers within Sympy
+496    expressions as Sympy integers (`Integer()`). It also sets the flag
+497    `algwsym_config.numerics.integers_as_exact = True` This is the default
+498    mode of algebra_with_sympy. To turn this off call
+499    `unset_integers_as_exact()`.
+500
+501    NOTE: `2/3` --> `0.6666...` even when this is set, but  `2*x/3` -->
+502    `Integer(2)/Integer(3)*x` if x is a sympy object. If `x` is just a Python
+503    object `2*x/3` --> `x*0.6666666666...`.
+504    """
+505    ip = False
+506    try:
+507        from IPython import get_ipython
+508        ip = True
+509    except ModuleNotFoundError:
+510        ip = False
+511    if ip:
+512        if get_ipython():
+513            get_ipython().input_transformers_post.append(integers_as_exact)
+514            algwsym_config = get_ipython().user_ns.get("algwsym_config", False)
+515            if algwsym_config:
+516                algwsym_config.numerics.integers_as_exact = True
+517            else:
+518                raise ValueError("The algwsym_config object does not exist.")
+519    return
 
-

This operation uses sympy.interactive.session.int_to_Integer, which -causes any number input without a decimal to be interpreted as a sympy -integer, to pre-parse input cells. It also sets the flag +

This operation causes any number input without a decimal that is +part of a Sympy expression to be interpreted as a sympy +integer, by using a custom preparser to cast integers within Sympy +expressions as Sympy integers (Integer()). It also sets the flag algwsym_config.numerics.integers_as_exact = True This is the default mode of algebra_with_sympy. To turn this off call unset_integers_as_exact().

+ +

NOTE: 2/3 --> 0.6666... even when this is set, but 2*x/3 --> +Integer(2)/Integer(3)*x if x is a sympy object. If x is just a Python +object 2*x/3 --> x*0.6666666666....

@@ -1968,38 +1983,38 @@

Printing

-
516def unset_integers_as_exact():
-517    """This operation disables forcing of numbers input without
-518    decimals being interpreted as sympy integers. Numbers input without a
-519    decimal may be interpreted as floating point if they are part of an
-520    expression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It
-521    also sets the flag `algwsym_config.numerics.integers_as_exact = False`.
-522    Call `set_integers_as_exact()` to avoid this conversion of rational
-523    fractions and related expressions to floating point. Algebra_with_sympy
-524    starts with `set_integers_as_exact()` enabled (
-525    `algwsym_config.numerics.integers_as_exact = True`).
-526    """
-527    ip = False
-528    try:
-529        from IPython import get_ipython
-530        ip = True
-531    except ModuleNotFoundError:
-532        ip = False
-533    if ip:
-534        if get_ipython():
-535            pre = get_ipython().input_transformers_post
-536            # The below looks excessively complicated, but more reliably finds the
-537            # transformer to remove across varying IPython environments.
-538            for k in pre:
-539                if "integers_as_exact" in k.__name__:
-540                    pre.remove(k)
-541            algwsym_config = get_ipython().user_ns.get("algwsym_config", False)
-542            if algwsym_config:
-543                algwsym_config.numerics.integers_as_exact = False
-544            else:
-545                raise ValueError("The algwsym_config object does not exist.")
-546
-547    return
+            
521def unset_integers_as_exact():
+522    """This operation disables forcing of numbers input without
+523    decimals being interpreted as sympy integers. Numbers input without a
+524    decimal may be interpreted as floating point if they are part of an
+525    expression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It
+526    also sets the flag `algwsym_config.numerics.integers_as_exact = False`.
+527    Call `set_integers_as_exact()` to avoid this conversion of rational
+528    fractions and related expressions to floating point. Algebra_with_sympy
+529    starts with `set_integers_as_exact()` enabled (
+530    `algwsym_config.numerics.integers_as_exact = True`).
+531    """
+532    ip = False
+533    try:
+534        from IPython import get_ipython
+535        ip = True
+536    except ModuleNotFoundError:
+537        ip = False
+538    if ip:
+539        if get_ipython():
+540            pre = get_ipython().input_transformers_post
+541            # The below looks excessively complicated, but more reliably finds the
+542            # transformer to remove across varying IPython environments.
+543            for k in pre:
+544                if "integers_as_exact" in k.__name__:
+545                    pre.remove(k)
+546            algwsym_config = get_ipython().user_ns.get("algwsym_config", False)
+547            if algwsym_config:
+548                algwsym_config.numerics.integers_as_exact = False
+549            else:
+550                raise ValueError("The algwsym_config object does not exist.")
+551
+552    return
 
@@ -2039,46 +2054,46 @@

Printing

-
555def units(names):
-556    """
-557    This operation declares the symbols to be positive values, so that sympy
-558    will handle them properly when simplifying expressions containing units.
-559    Units defined this way are just unit symbols. If you want units that are
-560    aware of conversions see sympy.physics.units.
-561
-562
-563    :param string names: a string containing a space separated list of
-564    symbols to be treated as units.
-565
-566    :return string list of defined units: calls `name = symbols(name,
-567    positive=True)` in the interactive namespace for each symbol name.
-568    """
-569    from sympy.core.symbol import symbols
-570    #import __main__ as shell
-571    user_namespace = None
-572    try:
-573        from IPython import get_ipython
-574        if get_ipython():
-575            user_namespace = get_ipython().user_ns
-576    except ModuleNotFoundError:
-577        pass
-578    syms = names.split(' ')
-579    retstr = ''
-580
-581    if user_namespace==None:
-582        import sys
-583        frame_num = 0
-584        frame_name = None
-585        while frame_name != '__main__' and frame_num < 50:
-586            user_namespace = sys._getframe(frame_num).f_globals
-587            frame_num +=1
-588            frame_name = user_namespace['__name__']
-589    retstr +='('
-590    for k in syms:
-591        user_namespace[k] = symbols(k, positive = True)
-592        retstr += k + ','
-593    retstr = retstr[:-1] + ')'
-594    return retstr
+            
560def units(names):
+561    """
+562    This operation declares the symbols to be positive values, so that sympy
+563    will handle them properly when simplifying expressions containing units.
+564    Units defined this way are just unit symbols. If you want units that are
+565    aware of conversions see sympy.physics.units.
+566
+567
+568    :param string names: a string containing a space separated list of
+569    symbols to be treated as units.
+570
+571    :return string list of defined units: calls `name = symbols(name,
+572    positive=True)` in the interactive namespace for each symbol name.
+573    """
+574    from sympy.core.symbol import symbols
+575    #import __main__ as shell
+576    user_namespace = None
+577    try:
+578        from IPython import get_ipython
+579        if get_ipython():
+580            user_namespace = get_ipython().user_ns
+581    except ModuleNotFoundError:
+582        pass
+583    syms = names.split(' ')
+584    retstr = ''
+585
+586    if user_namespace==None:
+587        import sys
+588        frame_num = 0
+589        frame_name = None
+590        while frame_name != '__main__' and frame_num < 50:
+591            user_namespace = sys._getframe(frame_num).f_globals
+592            frame_num +=1
+593            frame_name = user_namespace['__name__']
+594    retstr +='('
+595    for k in syms:
+596        user_namespace[k] = symbols(k, positive = True)
+597        retstr += k + ','
+598    retstr = retstr[:-1] + ')'
+599    return retstr
 
@@ -2115,119 +2130,119 @@
Returns
-
597def solve(f, *symbols, **flags):
-598    """
-599    Override of sympy `solve()`.
-600
-601    If passed an expression and variable(s) to solve for it behaves
-602    almost the same as normal solve with `dict = True`, except that solutions
-603    are wrapped in a FiniteSet() to guarantee that the output will be pretty
-604    printed in Jupyter like environments.
+            
602def solve(f, *symbols, **flags):
+603    """
+604    Override of sympy `solve()`.
 605
-606    If passed an equation or equations it returns solutions as a
-607    `FiniteSet()` of solutions, where each solution is represented by an
-608    equation or set of equations.
-609
-610    To get a Python `list` of solutions (pre-0.11.0 behavior) rather than a
-611    `FiniteSet` issue the command `algwsym_config.output.solve_to_list = True`.
-612    This also prevents pretty-printing in IPython and Jupyter.
-613
-614    Examples
-615    --------
-616    >>> a, b, c, x, y = symbols('a b c x y', real = True)
-617    >>> import sys
-618    >>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.
-619    >>> eq1 = Eqn(abs(2*x+y),3)
-620    >>> eq2 = Eqn(abs(x + 2*y),3)
-621    >>> B = solve((eq1,eq2))
-622
-623    Default human readable output on command line
-624    >>> B
-625    {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}
-626
-627    To get raw output turn off by setting
-628    >>> algwsym_config.output.human_text=False
+606    If passed an expression and variable(s) to solve for it behaves
+607    almost the same as normal solve with `dict = True`, except that solutions
+608    are wrapped in a FiniteSet() to guarantee that the output will be pretty
+609    printed in Jupyter like environments.
+610
+611    If passed an equation or equations it returns solutions as a
+612    `FiniteSet()` of solutions, where each solution is represented by an
+613    equation or set of equations.
+614
+615    To get a Python `list` of solutions (pre-0.11.0 behavior) rather than a
+616    `FiniteSet` issue the command `algwsym_config.output.solve_to_list = True`.
+617    This also prevents pretty-printing in IPython and Jupyter.
+618
+619    Examples
+620    --------
+621    >>> a, b, c, x, y = symbols('a b c x y', real = True)
+622    >>> import sys
+623    >>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.
+624    >>> eq1 = Eqn(abs(2*x+y),3)
+625    >>> eq2 = Eqn(abs(x + 2*y),3)
+626    >>> B = solve((eq1,eq2))
+627
+628    Default human readable output on command line
 629    >>> B
-630    FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))
+630    {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}
 631
-632    Pre-0.11.0 behavior where a python list of solutions is returned
-633    >>> algwsym_config.output.solve_to_list = True
-634    >>> solve((eq1,eq2))
-635    [[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]
-636    >>> algwsym_config.output.solve_to_list = False # reset to default
-637
-638    `algwsym_config.output.human_text = True` with
-639    `algwsym_config.output.how_code=True` shows both.
-640    In Jupyter-like environments `show_code=True` yields the Raw output and
-641    a typeset version. If `show_code=False` (the default) only the
-642    typeset version is shown in Jupyter.
-643    >>> algwsym_config.output.show_code=True
-644    >>> algwsym_config.output.human_text=True
-645    >>> B
-646    Code version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))
-647    {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}
-648    """
-649    from sympy.solvers.solvers import solve
-650    from sympy.sets.sets import FiniteSet
-651    newf =[]
-652    solns = []
-653    displaysolns = []
-654    contains_eqn = False
-655    if hasattr(f,'__iter__'):
-656        for k in f:
-657            if isinstance(k, Equation):
-658                newf.append(k.lhs-k.rhs)
-659                contains_eqn = True
-660            else:
-661                newf.append(k)
-662    else:
-663        if isinstance(f, Equation):
-664            newf.append(f.lhs - f.rhs)
-665            contains_eqn = True
-666        else:
-667            newf.append(f)
-668    flags['dict'] = True
-669    result = solve(newf, *symbols, **flags)
-670    if len(symbols) == 1 and hasattr(symbols[0], "__iter__"):
-671        symbols = symbols[0]
-672    if contains_eqn:
-673        if len(result[0]) == 1:
-674            for k in result:
-675                for key in k.keys():
-676                    val = k[key]
-677                    tempeqn = Eqn(key, val)
-678                    solns.append(tempeqn)
-679            if len(solns) == len(symbols):
-680                # sort according to the user-provided symbols
-681                solns = sorted(solns, key=lambda x: symbols.index(x.lhs))
-682        else:
-683            for k in result:
-684                solnset = []
-685                for key in k.keys():
-686                    val = k[key]
-687                    tempeqn = Eqn(key, val)
-688                    solnset.append(tempeqn)
-689                if not algwsym_config.output.solve_to_list:
-690                    solnset = FiniteSet(*solnset)
-691                else:
-692                    if len(solnset) == len(symbols):
-693                        # sort according to the user-provided symbols
-694                        solnset = sorted(solnset, key=lambda x: symbols.index(x.lhs))
-695                solns.append(solnset)
-696    else:
-697        solns = result
-698    if algwsym_config.output.solve_to_list:
-699        if len(solns) == 1 and hasattr(solns[0], "__iter__"):
-700            # no need to wrap a list of a single element inside another list
-701            return solns[0]
-702        return solns
-703    else:
-704        if len(solns) == 1:
-705            # do not wrap a singleton in FiniteSet if it already is
-706            for k in solns:
-707                if isinstance(k, FiniteSet):
-708                    return k
-709        return FiniteSet(*solns)
+632    To get raw output turn off by setting
+633    >>> algwsym_config.output.human_text=False
+634    >>> B
+635    FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))
+636
+637    Pre-0.11.0 behavior where a python list of solutions is returned
+638    >>> algwsym_config.output.solve_to_list = True
+639    >>> solve((eq1,eq2))
+640    [[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]
+641    >>> algwsym_config.output.solve_to_list = False # reset to default
+642
+643    `algwsym_config.output.human_text = True` with
+644    `algwsym_config.output.how_code=True` shows both.
+645    In Jupyter-like environments `show_code=True` yields the Raw output and
+646    a typeset version. If `show_code=False` (the default) only the
+647    typeset version is shown in Jupyter.
+648    >>> algwsym_config.output.show_code=True
+649    >>> algwsym_config.output.human_text=True
+650    >>> B
+651    Code version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))
+652    {{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}
+653    """
+654    from sympy.solvers.solvers import solve
+655    from sympy.sets.sets import FiniteSet
+656    newf =[]
+657    solns = []
+658    displaysolns = []
+659    contains_eqn = False
+660    if hasattr(f,'__iter__'):
+661        for k in f:
+662            if isinstance(k, Equation):
+663                newf.append(k.lhs-k.rhs)
+664                contains_eqn = True
+665            else:
+666                newf.append(k)
+667    else:
+668        if isinstance(f, Equation):
+669            newf.append(f.lhs - f.rhs)
+670            contains_eqn = True
+671        else:
+672            newf.append(f)
+673    flags['dict'] = True
+674    result = solve(newf, *symbols, **flags)
+675    if len(symbols) == 1 and hasattr(symbols[0], "__iter__"):
+676        symbols = symbols[0]
+677    if contains_eqn:
+678        if len(result[0]) == 1:
+679            for k in result:
+680                for key in k.keys():
+681                    val = k[key]
+682                    tempeqn = Eqn(key, val)
+683                    solns.append(tempeqn)
+684            if len(solns) == len(symbols):
+685                # sort according to the user-provided symbols
+686                solns = sorted(solns, key=lambda x: symbols.index(x.lhs))
+687        else:
+688            for k in result:
+689                solnset = []
+690                for key in k.keys():
+691                    val = k[key]
+692                    tempeqn = Eqn(key, val)
+693                    solnset.append(tempeqn)
+694                if not algwsym_config.output.solve_to_list:
+695                    solnset = FiniteSet(*solnset)
+696                else:
+697                    if len(solnset) == len(symbols):
+698                        # sort according to the user-provided symbols
+699                        solnset = sorted(solnset, key=lambda x: symbols.index(x.lhs))
+700                solns.append(solnset)
+701    else:
+702        solns = result
+703    if algwsym_config.output.solve_to_list:
+704        if len(solns) == 1 and hasattr(solns[0], "__iter__"):
+705            # no need to wrap a list of a single element inside another list
+706            return solns[0]
+707        return solns
+708    else:
+709        if len(solns) == 1:
+710            # do not wrap a singleton in FiniteSet if it already is
+711            for k in solns:
+712                if isinstance(k, FiniteSet):
+713                    return k
+714        return FiniteSet(*solns)
 
@@ -2314,60 +2329,60 @@

Examples

-
711def solveset(f, symbols, domain=sympy.Complexes):
-712    """
-713    Very experimental override of sympy solveset, which we hope will replace
-714    solve. Much is not working. It is not clear how to input a system of
-715    equations unless you directly select `linsolve`, etc...
-716    """
-717    from sympy.solvers import solveset as solve
-718    newf = []
-719    solns = []
-720    displaysolns = []
-721    contains_eqn = False
-722    if hasattr(f, '__iter__'):
-723        for k in f:
-724            if isinstance(k, Equation):
-725                newf.append(k.lhs - k.rhs)
-726                contains_eqn = True
-727            else:
-728                newf.append(k)
-729    else:
-730        if isinstance(f, Equation):
-731            newf.append(f.lhs - f.rhs)
-732            contains_eqn = True
-733        else:
-734            newf.append(f)
-735    result = solve(*newf, symbols, domain=domain)
-736    # if contains_eqn:
-737    #     if len(result[0]) == 1:
-738    #         for k in result:
-739    #             for key in k.keys():
-740    #                 val = k[key]
-741    #                 tempeqn = Eqn(key, val)
-742    #                 solns.append(tempeqn)
-743    #         display(*solns)
-744    #     else:
-745    #         for k in result:
-746    #             solnset = []
-747    #             displayset = []
-748    #             for key in k.keys():
-749    #                 val = k[key]
-750    #                 tempeqn = Eqn(key, val)
-751    #                 solnset.append(tempeqn)
-752    #                 if algwsym_config.output.show_solve_output:
-753    #                     displayset.append(tempeqn)
-754    #             if algwsym_config.output.show_solve_output:
-755    #                 displayset.append('-----')
-756    #             solns.append(solnset)
-757    #             if algwsym_config.output.show_solve_output:
-758    #                 for k in displayset:
-759    #                     displaysolns.append(k)
-760    #         if algwsym_config.output.show_solve_output:
-761    #             display(*displaysolns)
-762    # else:
-763    solns = result
-764    return solns
+            
716def solveset(f, symbols, domain=sympy.Complexes):
+717    """
+718    Very experimental override of sympy solveset, which we hope will replace
+719    solve. Much is not working. It is not clear how to input a system of
+720    equations unless you directly select `linsolve`, etc...
+721    """
+722    from sympy.solvers import solveset as solve
+723    newf = []
+724    solns = []
+725    displaysolns = []
+726    contains_eqn = False
+727    if hasattr(f, '__iter__'):
+728        for k in f:
+729            if isinstance(k, Equation):
+730                newf.append(k.lhs - k.rhs)
+731                contains_eqn = True
+732            else:
+733                newf.append(k)
+734    else:
+735        if isinstance(f, Equation):
+736            newf.append(f.lhs - f.rhs)
+737            contains_eqn = True
+738        else:
+739            newf.append(f)
+740    result = solve(*newf, symbols, domain=domain)
+741    # if contains_eqn:
+742    #     if len(result[0]) == 1:
+743    #         for k in result:
+744    #             for key in k.keys():
+745    #                 val = k[key]
+746    #                 tempeqn = Eqn(key, val)
+747    #                 solns.append(tempeqn)
+748    #         display(*solns)
+749    #     else:
+750    #         for k in result:
+751    #             solnset = []
+752    #             displayset = []
+753    #             for key in k.keys():
+754    #                 val = k[key]
+755    #                 tempeqn = Eqn(key, val)
+756    #                 solnset.append(tempeqn)
+757    #                 if algwsym_config.output.show_solve_output:
+758    #                     displayset.append(tempeqn)
+759    #             if algwsym_config.output.show_solve_output:
+760    #                 displayset.append('-----')
+761    #             solns.append(solnset)
+762    #             if algwsym_config.output.show_solve_output:
+763    #                 for k in displayset:
+764    #                     displaysolns.append(k)
+765    #         if algwsym_config.output.show_solve_output:
+766    #             display(*displaysolns)
+767    # else:
+768    solns = result
+769    return solns
 
@@ -2389,23 +2404,23 @@

Examples

-
767class Equality(Equality):
-768    """
-769    Extension of Equality class to include the ability to convert it to an
-770    Equation.
-771    """
-772    def to_Equation(self):
-773        """
-774        Return: recasts the Equality as an Equation.
-775        """
-776        return Equation(self.lhs,self.rhs)
-777
-778    def to_Eqn(self):
-779        """
-780        Synonym for to_Equation.
-781        Return: recasts the Equality as an Equation.
-782        """
-783        return self.to_Equation()
+            
772class Equality(Equality):
+773    """
+774    Extension of Equality class to include the ability to convert it to an
+775    Equation.
+776    """
+777    def to_Equation(self):
+778        """
+779        Return: recasts the Equality as an Equation.
+780        """
+781        return Equation(self.lhs,self.rhs)
+782
+783    def to_Eqn(self):
+784        """
+785        Synonym for to_Equation.
+786        Return: recasts the Equality as an Equation.
+787        """
+788        return self.to_Equation()
 
@@ -2425,11 +2440,11 @@

Examples

-
772    def to_Equation(self):
-773        """
-774        Return: recasts the Equality as an Equation.
-775        """
-776        return Equation(self.lhs,self.rhs)
+            
777    def to_Equation(self):
+778        """
+779        Return: recasts the Equality as an Equation.
+780        """
+781        return Equation(self.lhs,self.rhs)
 
@@ -2449,12 +2464,12 @@

Examples

-
778    def to_Eqn(self):
-779        """
-780        Synonym for to_Equation.
-781        Return: recasts the Equality as an Equation.
-782        """
-783        return self.to_Equation()
+            
783    def to_Eqn(self):
+784        """
+785        Synonym for to_Equation.
+786        Return: recasts the Equality as an Equation.
+787        """
+788        return self.to_Equation()
 
@@ -2576,32 +2591,32 @@
Inherited Members
refine
rewrite
could_extract_minus_sign
-
is_nonpositive
-
is_integer
-
is_prime
-
is_polar
-
is_infinite
-
is_rational
-
is_transcendental
-
is_nonnegative
-
is_extended_nonzero
-
is_extended_negative
-
is_extended_positive
-
is_complex
+
is_composite
is_imaginary
+
is_even
+
is_noninteger
+
is_algebraic
+
is_antihermitian
+
is_odd
+
is_complex
is_hermitian
+
is_extended_nonnegative
is_positive
-
is_composite
+
is_prime
is_extended_nonpositive
-
is_antihermitian
+
is_extended_negative
+
is_nonpositive
+
is_irrational
is_finite
-
is_even
+
is_polar
is_nonzero
-
is_extended_nonnegative
-
is_noninteger
-
is_irrational
-
is_odd
-
is_algebraic
+
is_integer
+
is_extended_nonzero
+
is_extended_positive
+
is_transcendental
+
is_nonnegative
+
is_rational
+
is_infinite
sympy.core.evalf.EvalfMixin
diff --git a/docs/algebra_with_sympy/preparser.html b/docs/algebra_with_sympy/preparser.html index 1c6c359..46bc28f 100644 --- a/docs/algebra_with_sympy/preparser.html +++ b/docs/algebra_with_sympy/preparser.html @@ -56,13 +56,16 @@

API Documentation

  • algebra_with_sympy_preparser
  • +
  • + toIntegerInSympyExpr +
  • integers_as_exact
  • -
    Algebra with Sympy v1.0.2
    +
    Algebra with Sympy v1.1.0
    built with pdoc -
     1def algebra_with_sympy_preparser(lines):
    - 2    """
    - 3    In IPython compatible environments (Jupyter, IPython, etc...) this supports
    - 4    a special compact input method for equations.
    - 5
    - 6    The syntax supported is `equation_name =@ equation.lhs = equation.rhs`,
    - 7    where `equation_name` is a valid Python name that can be used to refer to
    - 8    the equation later. `equation.lhs` is the left-hand side of the equation
    - 9    and `equation.rhs` is the right-hand side of the equation. Each side of the
    -10    equation must parse into a valid Sympy expression.
    -11
    -12    **Note**: This does not support line continuation. Long equations should be
    -13    built by combining expressions using names short enough to do this on one
    -14    line. The alternative is to use `equation_name = Eqn(long ...
    -15    expressions ... with ... multiple ... lines)`.
    -16
    -17    **Note**: If the `equation_name` is omitted the equation will be formed,
    -18    but it will not be assigned to a name that can be used to refer to it
    -19    later. You may be able to access it through one of the special IPython
    -20    underscore names. This is not recommended.
    -21
    -22    **THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT
    -23    BEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED
    -24    DIRECTLY BY A USER**
    -25    """
    -26    new_lines = []
    -27    if isinstance(lines,str):
    -28        lines = [lines]
    -29    for k in lines:
    -30        if '=@' in k:
    -31            drop_comments = k.split('#')
    -32            to_rephrase = ''
    -33            if len(drop_comments) > 2:
    -34                for i in range(len(drop_comments)-1):
    -35                    to_rephrase += drop_comments[i]
    -36            else:
    -37                to_rephrase = drop_comments[0]
    -38            linesplit = to_rephrase.split('=@')
    -39            eqsplit = linesplit[1].split('=')
    -40            if len(eqsplit)!=2:
    -41                raise ValueError('The two sides of the equation must be' \
    -42                                 ' separated by an \"=\" sign when using' \
    -43                                 ' the \"=@\" special input method.')
    -44            templine =''
    -45            if eqsplit[0]!='' and eqsplit[1]!='':
    -46                if eqsplit[1].endswith('\n'):
    -47                    eqsplit[1] = eqsplit[1][:-1]
    -48                if linesplit[0]!='':
    -49                    templine = str(linesplit[0])+'= Eqn('+str(eqsplit[0])+',' \
    -50                        ''+str(eqsplit[1])+')\n'
    -51                else:
    -52                    templine = 'Eqn('+str(eqsplit[0])+','+str(eqsplit[1])+')\n'
    -53            new_lines.append(templine)
    -54        else:
    -55            new_lines.append(k)
    -56    return new_lines
    -57
    -58
    -59def integers_as_exact(lines):
    -60    """This preparser uses `sympy.interactive.session.int_to_Integer` to
    -61    convert numbers without decimal points into sympy integers so that math
    -62    on them will be exact rather than defaulting to floating point. **This
    -63    should not be called directly by the user. It is plugged into the
    -64    IPython preparsing sequence when the feature is requested.** The default for
    -65    Algebra_with_sympy is to use this preparser. This can be turned on and
    -66    off using the Algebra_with_sympy functions:
    -67    * `set_integers_as_exact()`
    -68    * `unset_integers_as_exact()`
    -69    NOTE: This option does not work in plain vanilla Python sessions. You
    -70    must be running in an IPython environment (Jupyter, Notebook, Colab,
    -71    etc...).
    -72    """
    -73    from sympy.interactive.session import int_to_Integer
    -74    string = ''
    -75    for k in lines:
    -76        string += k + '\n'
    -77    string = string[:-1] # remove the last '\n'
    -78    return int_to_Integer(string)
    -79try:
    -80    from IPython import get_ipython
    -81    if get_ipython():
    -82        if hasattr(get_ipython(),'input_transformers_cleanup'):
    -83            get_ipython().input_transformers_post.\
    -84                append(algebra_with_sympy_preparser)
    -85        else:
    -86            import warnings
    -87            warnings.warn('Compact equation input unavailable.\nYou will have ' \
    -88                          'to use the form "eq1 = Eqn(lhs,rhs)" instead of ' \
    -89                          '"eq1=@lhs=rhs".\nIt appears you are running an ' \
    -90                          'outdated version of IPython.\nTo fix, update IPython ' \
    -91                          'using "pip install -U IPython".')
    -92except ModuleNotFoundError:
    -93    pass
    +                        
      1def algebra_with_sympy_preparser(lines):
    +  2    """
    +  3    In IPython compatible environments (Jupyter, IPython, etc...) this supports
    +  4    a special compact input method for equations.
    +  5
    +  6    The syntax supported is `equation_name =@ equation.lhs = equation.rhs`,
    +  7    where `equation_name` is a valid Python name that can be used to refer to
    +  8    the equation later. `equation.lhs` is the left-hand side of the equation
    +  9    and `equation.rhs` is the right-hand side of the equation. Each side of the
    + 10    equation must parse into a valid Sympy expression.
    + 11
    + 12    **Note**: This does not support line continuation. Long equations should be
    + 13    built by combining expressions using names short enough to do this on one
    + 14    line. The alternative is to use `equation_name = Eqn(long ...
    + 15    expressions ... with ... multiple ... lines)`.
    + 16
    + 17    **Note**: If the `equation_name` is omitted the equation will be formed,
    + 18    but it will not be assigned to a name that can be used to refer to it
    + 19    later. You may be able to access it through one of the special IPython
    + 20    underscore names. This is not recommended.
    + 21
    + 22    **THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT
    + 23    BEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED
    + 24    DIRECTLY BY A USER**
    + 25    """
    + 26    new_lines = []
    + 27    if isinstance(lines,str):
    + 28        lines = [lines]
    + 29    for k in lines:
    + 30        if '=@' in k:
    + 31            drop_comments = k.split('#')
    + 32            to_rephrase = ''
    + 33            if len(drop_comments) > 2:
    + 34                for i in range(len(drop_comments)-1):
    + 35                    to_rephrase += drop_comments[i]
    + 36            else:
    + 37                to_rephrase = drop_comments[0]
    + 38            linesplit = to_rephrase.split('=@')
    + 39            eqsplit = linesplit[1].split('=')
    + 40            if len(eqsplit)!=2:
    + 41                raise ValueError('The two sides of the equation must be' \
    + 42                                 ' separated by an \"=\" sign when using' \
    + 43                                 ' the \"=@\" special input method.')
    + 44            templine =''
    + 45            if eqsplit[0]!='' and eqsplit[1]!='':
    + 46                if eqsplit[1].endswith('\n'):
    + 47                    eqsplit[1] = eqsplit[1][:-1]
    + 48                if linesplit[0]!='':
    + 49                    templine = str(linesplit[0])+'= Eqn('+str(eqsplit[0])+',' \
    + 50                        ''+str(eqsplit[1])+')\n'
    + 51                else:
    + 52                    templine = 'Eqn('+str(eqsplit[0])+','+str(eqsplit[1])+')\n'
    + 53            new_lines.append(templine)
    + 54        else:
    + 55            new_lines.append(k)
    + 56    return new_lines
    + 57
    + 58
    + 59def toIntegerInSympyExpr(string):
    + 60    """ This function takes a string of valid Python and wraps integers within Sympy expressions
    + 61        in `sympy.Integer()` to make them Sympy integers rather than Python `Int()`. The
    + 62        advantage of this is that calculations with `Integer()` types can be exact. This function
    + 63        is careful not to wrap `Int()` types that are not part of Sympy expressions, making it
    + 64        possible for this functionality to exist with operations (e.g. array and numpy indexing)
    + 65        that are not compatible with the `Integer()` type.
    + 66    """
    + 67    from tokenize import generate_tokens, NEWLINE, OP, untokenize
    + 68    from io import StringIO
    + 69    ###
    + 70    # Internally used functions
    + 71    ###
    + 72    def isSympy(tokens, newSymObj):
    + 73        """ Checks list of tokens to see if it contains a Sympy Object
    + 74
    + 75        Parameters
    + 76        ==========
    + 77        tokens:list of tokens.
    + 78        newSymObj:list of string names of Sympy objects that have been declared
    + 79          in the current script/string being parsed.
    + 80        """
    + 81        from sympy import Basic
    + 82        from tokenize import NAME
    + 83        import __main__ as user_ns
    + 84        # print(dir(user_ns))
    + 85        sympy_obj = False
    + 86        for kind, string, start, end, line in tokens:
    + 87            if kind == NAME:
    + 88                # print('Checking: '+str(string))
    + 89                if hasattr(user_ns, string):
    + 90                    if isinstance(getattr(user_ns, string), Basic):
    + 91                        sympy_obj = True
    + 92                if string in newSymObj:
    + 93                    sympy_obj = True
    + 94        return sympy_obj
    + 95
    + 96    def toSympInteger(tokens):
    + 97        from tokenize import NUMBER, OP, NAME
    + 98        result = []
    + 99        for k in tokens:
    +100            if k[0] != NUMBER:
    +101                result.append((k[0], k[1]))
    +102            else:
    +103                if '.' in k[1] or 'j' in k[1].lower() or 'e' in k[1].lower():
    +104                    result.append((k[0], k[1]))
    +105                else:
    +106                    result.extend([
    +107                        (NAME, 'Integer'),
    +108                        (OP, '('),
    +109                        (NUMBER, k[1]),
    +110                        (OP, ')')
    +111                    ])
    +112        return result
    +113
    +114    def checkforSymObjDecl(token):
    +115        import re
    +116        from tokenize import NAME
    +117        syms = []
    +118        for kind, string, start, end, line in token:
    +119            if kind == NAME:
    +120                if string == 'var':
    +121                    match = re.search(r'\".*?\"|\'.*?\'', line)
    +122                    syms = match.group().replace('\"', '').replace('\'',
    +123                                                                   '').split(
    +124                        ' ')
    +125                if string == 'units':
    +126                    match = re.search(r'\".*?\"|\'.*?\'', line)
    +127                    syms = match.group().replace('\"', '').replace('\'',
    +128                                                                   '').split(
    +129                        ' ')
    +130                if string == 'symbols':
    +131                    parts = line.split('=')
    +132                    syms = parts[0].replace(' ', '').split(',')
    +133                if string == 'Symbol':
    +134                    parts = line.split('=')
    +135                    syms = parts[0].replace(' ', '').split(',')
    +136        return syms
    +137
    +138    ###
    +139    # The parsing and substitution.
    +140    ###
    +141    g = generate_tokens(StringIO(string).readline)
    +142    declaredSymObj = []
    +143    result = []
    +144    temptokens = []
    +145    openleft = 0
    +146    for k in g:
    +147        declaredSymObj.extend(checkforSymObjDecl([k]))
    +148        temptokens.append(k)
    +149        if k[0] == OP and k[1] == '(':
    +150            openleft += 1
    +151        if k[0] == OP and k[1] == ')':
    +152            openleft -= 1
    +153        if k[0] == NEWLINE and openleft == 0:
    +154            # This is where we check for sympy objects and replace int() with Integer()
    +155            hasSympyObj = isSympy(temptokens, declaredSymObj)
    +156            if hasSympyObj:
    +157                converted = toSympInteger(temptokens)
    +158                result.extend(converted)
    +159            else:
    +160                for j in temptokens:
    +161                    result.append((j[0],j[1]))
    +162            temptokens = []
    +163    return untokenize(result)
    +164
    +165def integers_as_exact(lines):
    +166    """This preparser uses `sympy.interactive.session.int_to_Integer` to
    +167    convert numbers without decimal points into sympy integers so that math
    +168    on them will be exact rather than defaulting to floating point. **This
    +169    should not be called directly by the user. It is plugged into the
    +170    IPython preparsing sequence when the feature is requested.** The default for
    +171    Algebra_with_sympy is to use this preparser. This can be turned on and
    +172    off using the Algebra_with_sympy functions:
    +173    * `set_integers_as_exact()`
    +174    * `unset_integers_as_exact()`
    +175    NOTE: This option does not work in plain vanilla Python sessions. You
    +176    must be running in an IPython environment (Jupyter, Notebook, Colab,
    +177    etc...).
    +178    """
    +179    #from sympy.interactive.session import int_to_Integer
    +180    string = ''
    +181    for k in lines:
    +182        string += k + '\n'
    +183    string = string[:-1] # remove the last '\n'
    +184    return toIntegerInSympyExpr(string)
    +185try:
    +186    from IPython import get_ipython
    +187    if get_ipython():
    +188        if hasattr(get_ipython(),'input_transformers_cleanup'):
    +189            get_ipython().input_transformers_post.\
    +190                append(algebra_with_sympy_preparser)
    +191        else:
    +192            import warnings
    +193            warnings.warn('Compact equation input unavailable.\nYou will have ' \
    +194                          'to use the form "eq1 = Eqn(lhs,rhs)" instead of ' \
    +195                          '"eq1=@lhs=rhs".\nIt appears you are running an ' \
    +196                          'outdated version of IPython.\nTo fix, update IPython ' \
    +197                          'using "pip install -U IPython".')
    +198except ModuleNotFoundError:
    +199    pass
     
    @@ -273,6 +382,135 @@

    + +
    + +
    + + def + toIntegerInSympyExpr(string): + + + +
    + +
     60def toIntegerInSympyExpr(string):
    + 61    """ This function takes a string of valid Python and wraps integers within Sympy expressions
    + 62        in `sympy.Integer()` to make them Sympy integers rather than Python `Int()`. The
    + 63        advantage of this is that calculations with `Integer()` types can be exact. This function
    + 64        is careful not to wrap `Int()` types that are not part of Sympy expressions, making it
    + 65        possible for this functionality to exist with operations (e.g. array and numpy indexing)
    + 66        that are not compatible with the `Integer()` type.
    + 67    """
    + 68    from tokenize import generate_tokens, NEWLINE, OP, untokenize
    + 69    from io import StringIO
    + 70    ###
    + 71    # Internally used functions
    + 72    ###
    + 73    def isSympy(tokens, newSymObj):
    + 74        """ Checks list of tokens to see if it contains a Sympy Object
    + 75
    + 76        Parameters
    + 77        ==========
    + 78        tokens:list of tokens.
    + 79        newSymObj:list of string names of Sympy objects that have been declared
    + 80          in the current script/string being parsed.
    + 81        """
    + 82        from sympy import Basic
    + 83        from tokenize import NAME
    + 84        import __main__ as user_ns
    + 85        # print(dir(user_ns))
    + 86        sympy_obj = False
    + 87        for kind, string, start, end, line in tokens:
    + 88            if kind == NAME:
    + 89                # print('Checking: '+str(string))
    + 90                if hasattr(user_ns, string):
    + 91                    if isinstance(getattr(user_ns, string), Basic):
    + 92                        sympy_obj = True
    + 93                if string in newSymObj:
    + 94                    sympy_obj = True
    + 95        return sympy_obj
    + 96
    + 97    def toSympInteger(tokens):
    + 98        from tokenize import NUMBER, OP, NAME
    + 99        result = []
    +100        for k in tokens:
    +101            if k[0] != NUMBER:
    +102                result.append((k[0], k[1]))
    +103            else:
    +104                if '.' in k[1] or 'j' in k[1].lower() or 'e' in k[1].lower():
    +105                    result.append((k[0], k[1]))
    +106                else:
    +107                    result.extend([
    +108                        (NAME, 'Integer'),
    +109                        (OP, '('),
    +110                        (NUMBER, k[1]),
    +111                        (OP, ')')
    +112                    ])
    +113        return result
    +114
    +115    def checkforSymObjDecl(token):
    +116        import re
    +117        from tokenize import NAME
    +118        syms = []
    +119        for kind, string, start, end, line in token:
    +120            if kind == NAME:
    +121                if string == 'var':
    +122                    match = re.search(r'\".*?\"|\'.*?\'', line)
    +123                    syms = match.group().replace('\"', '').replace('\'',
    +124                                                                   '').split(
    +125                        ' ')
    +126                if string == 'units':
    +127                    match = re.search(r'\".*?\"|\'.*?\'', line)
    +128                    syms = match.group().replace('\"', '').replace('\'',
    +129                                                                   '').split(
    +130                        ' ')
    +131                if string == 'symbols':
    +132                    parts = line.split('=')
    +133                    syms = parts[0].replace(' ', '').split(',')
    +134                if string == 'Symbol':
    +135                    parts = line.split('=')
    +136                    syms = parts[0].replace(' ', '').split(',')
    +137        return syms
    +138
    +139    ###
    +140    # The parsing and substitution.
    +141    ###
    +142    g = generate_tokens(StringIO(string).readline)
    +143    declaredSymObj = []
    +144    result = []
    +145    temptokens = []
    +146    openleft = 0
    +147    for k in g:
    +148        declaredSymObj.extend(checkforSymObjDecl([k]))
    +149        temptokens.append(k)
    +150        if k[0] == OP and k[1] == '(':
    +151            openleft += 1
    +152        if k[0] == OP and k[1] == ')':
    +153            openleft -= 1
    +154        if k[0] == NEWLINE and openleft == 0:
    +155            # This is where we check for sympy objects and replace int() with Integer()
    +156            hasSympyObj = isSympy(temptokens, declaredSymObj)
    +157            if hasSympyObj:
    +158                converted = toSympInteger(temptokens)
    +159                result.extend(converted)
    +160            else:
    +161                for j in temptokens:
    +162                    result.append((j[0],j[1]))
    +163            temptokens = []
    +164    return untokenize(result)
    +
    + + +

    This function takes a string of valid Python and wraps integers within Sympy expressions +in sympy.Integer() to make them Sympy integers rather than Python Int(). The +advantage of this is that calculations with Integer() types can be exact. This function +is careful not to wrap Int() types that are not part of Sympy expressions, making it +possible for this functionality to exist with operations (e.g. array and numpy indexing) +that are not compatible with the Integer() type.

    +
    + +
    @@ -285,26 +523,26 @@

    -
    60def integers_as_exact(lines):
    -61    """This preparser uses `sympy.interactive.session.int_to_Integer` to
    -62    convert numbers without decimal points into sympy integers so that math
    -63    on them will be exact rather than defaulting to floating point. **This
    -64    should not be called directly by the user. It is plugged into the
    -65    IPython preparsing sequence when the feature is requested.** The default for
    -66    Algebra_with_sympy is to use this preparser. This can be turned on and
    -67    off using the Algebra_with_sympy functions:
    -68    * `set_integers_as_exact()`
    -69    * `unset_integers_as_exact()`
    -70    NOTE: This option does not work in plain vanilla Python sessions. You
    -71    must be running in an IPython environment (Jupyter, Notebook, Colab,
    -72    etc...).
    -73    """
    -74    from sympy.interactive.session import int_to_Integer
    -75    string = ''
    -76    for k in lines:
    -77        string += k + '\n'
    -78    string = string[:-1] # remove the last '\n'
    -79    return int_to_Integer(string)
    +            
    166def integers_as_exact(lines):
    +167    """This preparser uses `sympy.interactive.session.int_to_Integer` to
    +168    convert numbers without decimal points into sympy integers so that math
    +169    on them will be exact rather than defaulting to floating point. **This
    +170    should not be called directly by the user. It is plugged into the
    +171    IPython preparsing sequence when the feature is requested.** The default for
    +172    Algebra_with_sympy is to use this preparser. This can be turned on and
    +173    off using the Algebra_with_sympy functions:
    +174    * `set_integers_as_exact()`
    +175    * `unset_integers_as_exact()`
    +176    NOTE: This option does not work in plain vanilla Python sessions. You
    +177    must be running in an IPython environment (Jupyter, Notebook, Colab,
    +178    etc...).
    +179    """
    +180    #from sympy.interactive.session import int_to_Integer
    +181    string = ''
    +182    for k in lines:
    +183        string += k + '\n'
    +184    string = string[:-1] # remove the last '\n'
    +185    return toIntegerInSympyExpr(string)
     
    diff --git a/docs/algebra_with_sympy/version.html b/docs/algebra_with_sympy/version.html index c6e95de..d7eaee4 100644 --- a/docs/algebra_with_sympy/version.html +++ b/docs/algebra_with_sympy/version.html @@ -56,7 +56,7 @@

    API Documentation

    -
    Algebra with Sympy v1.0.2
    +
    Algebra with Sympy v1.1.0
    built with pdoc -
    1__version__ = "1.0.2"
    +                        
    1__version__ = "1.1.0rc1"
     
    diff --git a/docs/search.js b/docs/search.js index cac7f26..c962c0e 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oAlgebraic Equations with SymPy\n\n

    Introduction | Output Formatting\n| Installation |\nTry Live | Issues or Comments |\nChange Log |\nLicense\n| GIT Repository\n| PyPi Link

    \n\n

    Website/Documentation (including API)

    \n\n

    Introduction

    \n\n

    This tool defines relations that all high school and college students would\nrecognize as mathematical equations. \nThey consist of a left hand side (lhs) and a right hand side (rhs) connected by\nthe relation operator \"=\". In addition, it sets some convenient defaults and \nprovides some controls of output formatting that may be useful even if\nyou do not use the Equation class (see Conveniences for\nSymPy).

    \n\n

    This tool applies operations to both sides of the equation simultaneously, just\nas students are taught to do when \nattempting to isolate (solve for) a variable. Thus the statement Equation/b\nyields a new equation Equation.lhs/b = Equation.rhs/b

    \n\n

    The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra\nin a stepwise fashion using as close to standard mathematical notation as \npossible. In this way more people can successfully perform \nalgebraic rearrangements without stumbling\nover missed details such as a negative sign.

    \n\n

    A simple example as it would appear in a Jupyter \nnotebook is shown immediately below:

    \n\n

    \"screenshot

    \n\n

    The last cell illustrates how it is possible to substitute numbers with \nunits into the solved equation to calculate a numerical solution with \nproper units. The units(...) operation is part this package, not Sympy.

    \n\n

    In IPython environments (IPython, Jupyter, Google Colab, etc...) there is \nalso a shorthand syntax for entering equations provided through the IPython \npreparser. An equation can be specified as eq1 =@ a/b = c/d.

    \n\n

    \"screenshot

    \n\n

    If no Python name is \nspecified for the equation (no eq_name to the left of =@), the equation \nwill still be defined, but will not be easily accessible for further \ncomputation. The =@ symbol combination was chosen to avoid conflicts with \nreserved python symbols while minimizing impacts on syntax highlighting \nand autoformatting.

    \n\n

    More examples of the capabilities of Algebra with Sympy are \nhere.

    \n\n

    Many math packages such as SageMath \nand Maxima have similar capabilities, \nbut require more knowledge of command syntax, plus they cannot easily be \ninstalled in a generic python environment.

    \n\n

    Convenience Tools and Defaults for Interactive Use of SymPy

    \n\n

    Even if you do not use the Equation class, there are some convenience \ntools and defaults that will probably make interactive use of SymPy in \nJupyter/IPython environments easier:

    \n\n
      \n
    • By default all numbers without decimal points are interpreted as integers. \nOne implication of this is that base ten fractions are exact (e.g. 2/3 -> \n2/3 not 0.6666...). This can be turned off with unset_integers_as_exact()\nand on with set_integers_as_exact(). When on the flag\nalgwsym_config.numerics.integers_as_exact = True.
    • \n
    • Results of solve() are wrapped in FiniteSet() to force pretty-printing \nof all of a solution set. See Controlling the Format of Interactive \nOutputs.
    • \n
    • It is possible to set the default display to show both the pretty-printed \nresult and the code version simultaneously. See Controlling the Format of Interactive \nOutputs.
    • \n
    \n\n

    Controlling the Format of Interactive Outputs

    \n\n
      \n
    • These controls impact all Sympy objects and the Equation class.
    • \n
    • In graphical environments (Jupyter) you will get rendered Latex such as \n$\\frac{a}{b} = \\frac{c}{d}$ or $e^{\\frac{-x^2}{\\sigma^2}}$. To also see the \ncode representation (what can be copied and pasted for \nadditional computation) set algwsym_config.output.show_code = True. \nThis will print the code version (e.g. Equation(a,b/c)) of equations \nand sympy expression in addition to the human readable version. This code \nversion can be accessed directly by calling repr() on the \nequation or expression.

    • \n
    • In interactive text environments (IPython and command line) The human \nreadable string version of Sympy expressions are returned (for Equations a \n= b rather than Equation(a,b)). This is equivalent to Calling print() \nor str() on an expression.

      \n\n
        \n
      • To have the code version (can be copied and pasted as a \nPython statement) returned, set algwsym_config.output.human_text = False.
      • \n
      • Setting both algwsym_config.output.human_text = True\nand algwsym_config.output.show_code = True, will return both the \ncode and human readable versions.
      • \n
    • \n
    • The equation label can be turned off by setting\nalgwsym_config.output.label = False.

    • \n
    • Automatic wrapping of Equations as Latex equations can be activated \nby setting algwsym_config.output.latex_as_equations to True. The \ndefault is False. Setting this to True wraps output as LaTex equations,\nwrapping them in \\begin{equation}...\\end{equation}. Equations formatted \nthis way will not be labeled with the internal name for the equation, \nindependent of the setting of algwsym_config.output.label.

    • \n
    • By default solutions output by solve() are returned as a SymPy \nFiniteSet() to force typesetting of the included solutions. To get Python \nlists instead you can override this for the whole session by setting\nalgwsym_config.output.solve_to_list = True. For a one-off, simply \nwrap the output of a solve in list() (e.g. list(solve(...))). One \nadvantage of list mode is that lists can be ordered. When\nalgwsym_config.output.solve_to_list = True solve() maintains the \nsolutions in the order the solve for variables were input.

    • \n
    \n\n

    Setup/Installation

    \n\n
      \n
    1. Use pip to install in your python environment: \npip install -U Algebra-with-SymPy
    2. \n
    3. To use in a running python session issue\nthe following command : from algebra_with_sympy import *. \nThis will also import the SymPy tools.
    4. \n
    5. If you want to isolate this tool from the global namespace you are \nworking with change the import statement \nto import algebra_with_sympy as spa, where \nspa stands for \"SymPy Algebra\". Then all calls would be made to \nspa.funcname(). WARNING: Doing this makes shorthand equation input and \ncontrol of interactive output formats unavailable. To recover this \nfunctionality the following code must be run in the interactive session.
    6. \n
    \n\n
    Equation = spa.Equation\nEqn = Equation\nalgwsym_config = spa.algwsym_config\n
    \n\n

    Try in binder

    \n\n

    \"Binder\"

    \n\n

    Issues or Comments

    \n\n\n\n

    Change Log

    \n\n
      \n
    • 1.0.2 (July 5, 2024)\n
        \n
      • Removed requirements for Jupyter and Jupyterlab as code will work in \nvanilla python or Google Colab.
      • \n
      • Workaround for Google Colab's inconsistent handling of mixed Latex and \nplain text strings. This impacted display of equation labels in Colab.
      • \n
      • BUG FIX: catch IPython not installed so that can run in plain vanilla \npython.
      • \n
    • \n
    • 1.0.1 (May 22, 2024)\n
        \n
      • BUG FIX: equation labels that include underscore characters \"_\" are now \naccepted.
      • \n
      • BUG FIX: wrapping equations formatted as LaTex equation (ie. surrounded \nby \\begin{equation}...\\end{equation}) in the $..$ code used to \nindicate markdown for MathJax was causing output errors in Quarto when \noutputing to .tex or .pdf. This is now fixed without negatively \nimpacting MathJax rendering.
      • \n
      • BUG FIX: Singleton results of solve unnecessarily wrapped by extra list \nor finiteset. No longer double nested.
      • \n
      • BUG FIX: When returning lists make solve respect user order of solutions.
      • \n
      • BUG FIX: Equation output threw error when Algebra_with_Sympy was \nimported as a submodule. Equation labeling turned off for this type of \nimport to avoid error.
      • \n
      • BUG FIX: Equation labels are now copyable even with the newer MathJax \ncommonHTML rendering.
      • \n
      • Updates to requirements.txt.
      • \n
      • Documentation updates.
      • \n
    • \n
    • 1.0.0 (January 2, 2024)\n
        \n
      • Added convenience operation units(...) which takes a string of space \nseparated symbols to use as units. This simply declares the symbols \nto be positive, making them behave as units. This does not create units \nthat know about conversions, prefixes or systems of units. This lack \nis on purpose to provide units that require the user to worry about \nconversions (ideal in a teaching situation). To get units with built-in \nconversions see sympy.physics.units.
      • \n
      • Fixed issue #23 where cos() multiplied by a factor was not the same \ntype of object after simplify() acted on an expression. Required \nembedding the Equation type in the sympy library. Until Equation is \nincorporated into the primary Sympy repository a customized version of \nthe latest stable release will be used.
      • \n
      • Fixed issue where trailing comments (ie. # a comment at the end of a \nline) lead to input errors using compact =@ notation.
      • \n
      • algwsym_config.output.latex_as_equations has a default value of False.\n Setting this to True wraps output as LaTex equations wrapping them \nin \\begin{equation}...\\end{equation}. Equations formatted this way \nwill not be labeled with the internal name for the equation.
      • \n
    • \n
    • 0.12.0 (July 12, 2023)\n
        \n
      • Now defaults to interpreting numbers without decimal points as integers. \nThis can be turned off with unset_integers_as_exact() and on with\nset_integers_as_exact(). When on the flag\nalgwsym_config.numerics.integers_as_exact = True.
      • \n
    • \n
    • 0.11.0 (June 5, 2023)\n
        \n
      • Formatting of FiniteSets overridden so that the contents always\npretty-print. This removes the necessity of special flags to get \npretty output from solve.
      • \n
      • Sympy solve() now works reliably with equations and outputs \npretty-printed solutions.
      • \n
      • Added option algwsym_config.output.solve_to_list = True which causes \nsolve() to return solutions sets as Python lists. Using this option \nprevents pretty-printing of the solutions produced by solve().
      • \n
      • algwsym_config.output.show_code and \nalgwsym_config.output.human_text now work for all sympy objects, not \njust Equation objects. This works\nin terminal, IPython terminal and Jupyter. This is achieved by hooking \ninto the python display_hook and IPython display_formatter.
      • \n
      • Added jupyter to requirements.txt so that virtual environment builds\nwill include jupyter.
      • \n
      • The way __version__ was handled could break pip install. Changed to\ngenerating the internal version during setup. This means the version\nis now available as algwsym_version.
      • \n
    • \n
    • 0.10.0 (Sep. 5, 2022)\n
        \n
      • Documentation updates and fixes.
      • \n
      • Significantly increased test coverage (~98%).
      • \n
      • Support for Eqn.rewrite(Add)
      • \n
      • Solving (e.g. solve(Eqn,x)) now supported fully. Still experimental.
      • \n
      • Bug fix: latex printing now supports custom printer.
      • \n
      • Substitution into an Equation using Equations is now \nsupported (e.g. eq1.subs(eq2, eq3, ...)).
      • \n
      • algebra_with_sympy.__version__ is now available for version checking \nwithin python.
      • \n
      • Bug fix: preparsing for =@ syntax no longer blocks obj? syntax for \ngetting docstrings in ipython.
      • \n
      • More robust determination of equation names for labeling.
      • \n
    • \n
    • 0.9.4 (Aug. 11, 2022)\n
        \n
      • Update to deal with new Sympy function piecewise_exclusive in v1.11.
      • \n
      • Added user warning if a function does not extend for use with Equations \nas expected. This also allows the package to be used even when a function \nextension does fail.
      • \n
      • Simplification of documentation preparation.
      • \n
      • Typo fixes in preparser error messages.
      • \n
    • \n
    • 0.9.3 (Aug. 9, 2022)\n
        \n
      • Added check for new enough version of IPython to use the preparser.
      • \n
      • If IPython version too old, issue warning and do not accept =@ shorthand.
      • \n
    • \n
    • 0.9.2 (Jun. 5, 2022)\n
        \n
      • =@ shorthand syntax for defining equations in IPython compatible \nenvironments.
      • \n
      • Fixed bug where root() override called sqrt() on bare expressions.
      • \n
    • \n
    • 0.9.1 (Mar. 24, 2022)\n
        \n
      • Equations labeled with their python name, if they have one.
      • \n
      • Added flags to adjust human readable output and equation labeling.
      • \n
      • Accept equation as function argument in any position.
      • \n
      • First pass at solve() accepting equations.
      • \n
      • Added override of root() to avoid warning messages.
      • \n
      • More unit tests.
      • \n
      • First pass at documentation.
      • \n
    • \n
    • 0.9.0 functionality equivalent to extension of SymPy in\nPR#21333.
    • \n
    \n\n

    licensed under GNU V3 license

    \n\n

    This program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.

    \n\n

    Copyright - Algebra with Sympy Contributors 2021, 2022, 2023, 2024

    \n\n

    Development Notes

    \n\n

    General | Make Docs | \nRunning Tests | \nBuild PyPi Package|

    \n\n

    General Notes

    \n\n
      \n
    • TODOs\n
        \n
      • Test collect when there isn't an available _eval_collect (not sure how \nto get there).
      • \n
      • Test for _binary_op NotImplemented error (not sure how to get there).
      • \n
    • \n
    • To consider\n
        \n
      • Include Sympy Plot Backends\nin the default setup.
      • \n
      • Change Equation constructor to accept Equality, Set, List or \nlhs, rhs, rather than just lhs, rhs.
      • \n
      • Extend .subs to accept .subs(a=2*c, b = sin(q), ...).
      • \n
      • MathLive on another web page as possible\ninput engine.
      • \n
    • \n
    \n\n

    Constructing the Documentation

    \n\n
      \n
    1. Make sure pdoc is installed and updated in the virtual environment pip \ninstall -U pdoc.
    2. \n
    3. Update any .md files included in _init_.py.\n
        \n
      • Generally URLs should be absolute, not relative.
      • \n
    4. \n
    5. At the root level run pdoc \n\npdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg \n--logo-link https://gutow.github.io/Algebra_with_Sympy/\n--footer-text \"Algebra with Sympy vX.X.X\" --math -html -o docs \n./algebra_with_sympy\n\nwhere X.X.X is the version number.
    6. \n
    \n\n

    Tasks for Documentation

    \n\n
      \n
    • Readme.md & Development Notes.md\n
        \n
      • Hard code anchors so that navigation links work on pypi page.
      • \n
      • Use absolute path to github pages for more examples.
      • \n
    • \n
    \n\n

    Running Tests

    \n\n
      \n
    1. Install updated pytest in the virtual environment:\n
      pipenv shell\npip install -U pytest\n
    2. \n
    3. Run standard tests:\npytest --ignore='Developer Testing' --ignore-glob='*test_preparser.py'.
    4. \n
    5. Run preparser tests:\nipython -m pytest tests/test_preparser.py
    6. \n
    7. Run doctests:\npytest --ignore='tests' --ignore='Developer Testing' \n--ignore-glob='*old*' --doctest-modules
    8. \n
    \n\n

    You can run all the tests using the dotests script: ./dotests.sh.

    \n\n

    NOTE: Some warnings about invalid escape characters are expected because \nraw strings are being passed with specialized LaTex escaped characters.

    \n\n

    Building PyPi package

    \n\n
      \n
    1. Make sure to update the version number in setup.py first.
    2. \n
    3. Install updated setuptools and twine in the virtual environment:\n
      pipenv shell\npip install -U setuptools wheel twine\n
    4. \n
    5. Build the distribution python -m setup sdist bdist_wheel.
    6. \n
    7. Test it on test.pypi.org.\n
        \n
      1. Upload it (you will need an account on test.pypi.org):\npython -m twine upload --repository testpypi dist/*.
      2. \n
      3. Create a new virtual environment and test install into it:\n
        exit # to get out of the current environment\ncd <somewhere>\nmkdir <new virtual environment>\ncd <new directory>\npipenv shell #creates the new environment and enters it.\npip install -i https://test.pypi.org/..... # copy actual link from the\n                                           # repository on test.pypi.\n
        \nThere are often install issues because sometimes only older versions of\nsome of the required packages are available on test.pypi.org. If this\nis the only problem change the version to end in rc0 for release\ncandidate and try it on the regular pypi.org as described below for\nreleasing on PyPi.
      4. \n
      5. After install test by running a jupyter notebook in the virtual \nenvironment.
      6. \n
    8. \n
    \n\n

    Releasing on PyPi

    \n\n

    Proceed only if testing of the build is successful.

    \n\n
      \n
    1. Double check the version number in version.py.
    2. \n
    3. Rebuild the release: python -m setup sdist bdist_wheel.
    4. \n
    5. Upload it: python -m twine upload dist/*
    6. \n
    7. Make sure it works by installing it in a clean virtual environment. This\nis the same as on test.pypi.org except without -i https://test.pypy.... If\nit does not work, pull the release.
    8. \n
    \n"}, "algebra_with_sympy.algwsym_version": {"fullname": "algebra_with_sympy.algwsym_version", "modulename": "algebra_with_sympy", "qualname": "algwsym_version", "kind": "variable", "doc": "

    \n", "default_value": "'1.0.2'"}, "algebra_with_sympy.algebraic_equation": {"fullname": "algebra_with_sympy.algebraic_equation", "modulename": "algebra_with_sympy.algebraic_equation", "kind": "module", "doc": "

    This package uses a special version of sympy which defines an equation \nwith a left-hand-side (lhs) and a right-\nhand-side (rhs) connected by the \"=\" operator (e.g. p*V = n*R*T).

    \n\n

    The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra in a stepwise fashion. In this way more people\ncan successfully perform algebraic rearrangements without stumbling over\nmissed details such as a negative sign. This mimics the capabilities available\nin SageMath and\nMaxima.

    \n\n

    This package also provides convenient settings for interactive use on the \ncommand line, in ipython and Jupyter notebook environments. See the \ndocumentation at https://gutow.github.io/Algebra_with_Sympy/.

    \n\n

    Explanation

    \n\n

    This class defines relations that all high school and college students\nwould recognize as mathematical equations. At present only the \"=\" relation\noperator is recognized.

    \n\n

    This class is intended to allow using the mathematical tools in SymPy to\nrearrange equations and perform algebra in a stepwise fashion. In this\nway more people can successfully perform algebraic rearrangements without\nstumbling over missed details such as a negative sign.

    \n\n

    Create an equation with the call Equation(lhs,rhs), where lhs and\nrhs are any valid Sympy expression. Eqn(...) is a synonym for\nEquation(...).

    \n\n

    Parameters

    \n\n

    lhs: sympy expression, class Expr.\nrhs: sympy expression, class Expr.\nkwargs:

    \n\n

    Examples

    \n\n

    NOTE: All the examples below are in vanilla python. You can get human\nreadable eqautions \"lhs = rhs\" in vanilla python by adjusting the settings\nin algwsym_config (see it's documentation). Output is human readable by\ndefault in IPython and Jupyter environments.

    \n\n
    \n
    >>> from algebra_with_sympy import *\n>>> a, b, c, x = var('a b c x')\n>>> Equation(a,b/c)\nEquation(a, b/c)\n>>> t=Eqn(a,b/c)\n>>> t\nEquation(a, b/c)\n>>> t*c\nEquation(a*c, b)\n>>> c*t\nEquation(a*c, b)\n>>> exp(t)\nEquation(exp(a), exp(b/c))\n>>> exp(log(t))\nEquation(a, b/c)\n
    \n
    \n\n

    Simplification and Expansion

    \n\n
    \n
    >>> f = Eqn(x**2 - 1, c)\n>>> f\nEquation(x**2 - 1, c)\n>>> f/(x+1)\nEquation((x**2 - 1)/(x + 1), c/(x + 1))\n>>> (f/(x+1)).simplify()\nEquation(x - 1, c/(x + 1))\n>>> simplify(f/(x+1))\nEquation(x - 1, c/(x + 1))\n>>> (f/(x+1)).expand()\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> expand(f/(x+1))\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> factor(f)\nEquation((x - 1)*(x + 1), c)\n>>> f.factor()\nEquation((x - 1)*(x + 1), c)\n>>> f2 = f+a*x**2+b*x +c\n>>> f2\nEquation(a*x**2 + b*x + c + x**2 - 1, a*x**2 + b*x + 2*c)\n>>> collect(f2,x)\nEquation(b*x + c + x**2*(a + 1) - 1, a*x**2 + b*x + 2*c)\n
    \n
    \n\n

    Apply operation to only one side

    \n\n
    \n
    >>> poly = Eqn(a*x**2 + b*x + c*x**2, a*x**3 + b*x**3 + c*x)\n>>> poly.applyrhs(factor,x)\nEquation(a*x**2 + b*x + c*x**2, x*(c + x**2*(a + b)))\n>>> poly.applylhs(factor)\nEquation(x*(a*x + b + c*x), a*x**3 + b*x**3 + c*x)\n>>> poly.applylhs(collect,x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n
    \n
    \n\n

    .apply... also works with user defined python functions

    \n\n
    \n
    >>> def addsquare(eqn):\n...     return eqn+eqn**2\n...\n>>> t.apply(addsquare)\nEquation(a**2 + a, b**2/c**2 + b/c)\n>>> t.applyrhs(addsquare)\nEquation(a, b**2/c**2 + b/c)\n>>> t.apply(addsquare, side = 'rhs')\nEquation(a, b**2/c**2 + b/c)\n>>> t.applylhs(addsquare)\nEquation(a**2 + a, b/c)\n>>> addsquare(t)\nEquation(a**2 + a, b**2/c**2 + b/c)\n
    \n
    \n\n

    Inaddition to .apply... there is also the less general .do,\n.dolhs, .dorhs, which only works for operations defined on the\nExpr class (e.g..collect(), .factor(), .expand(), etc...).

    \n\n
    \n
    >>> poly.dolhs.collect(x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n>>> poly.dorhs.collect(x)\nEquation(a*x**2 + b*x + c*x**2, c*x + x**3*(a + b))\n>>> poly.do.collect(x)\nEquation(b*x + x**2*(a + c), c*x + x**3*(a + b))\n>>> poly.dorhs.factor()\nEquation(a*x**2 + b*x + c*x**2, x*(a*x**2 + b*x**2 + c))\n
    \n
    \n\n

    poly.do.exp() or other sympy math functions will raise an error.

    \n\n

    Rearranging an equation (simple example made complicated as illustration)

    \n\n
    \n
    >>> p, V, n, R, T = var('p V n R T')\n>>> eq1=Eqn(p*V,n*R*T)\n>>> eq1\nEquation(V*p, R*T*n)\n>>> eq2 =eq1/V\n>>> eq2\nEquation(p, R*T*n/V)\n>>> eq3 = eq2/R/T\n>>> eq3\nEquation(p/(R*T), n/V)\n>>> eq4 = eq3*R/p\n>>> eq4\nEquation(1/T, R*n/(V*p))\n>>> 1/eq4\nEquation(T, V*p/(R*n))\n>>> eq5 = 1/eq4 - T\n>>> eq5\nEquation(0, -T + V*p/(R*n))\n
    \n
    \n\n

    Substitution (#'s and units)

    \n\n
    \n
    >>> L, atm, mol, K = var('L atm mol K', positive=True, real=True) # units\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L})\nEquation(p, 0.9334325*atm)\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L}).evalf(4)\nEquation(p, 0.9334*atm)\n
    \n
    \n\n

    Substituting an equation into another equation:

    \n\n
    \n
    >>> P, P1, P2, A1, A2, E1, E2 = symbols("P, P1, P2, A1, A2, E1, E2")\n>>> eq1 = Eqn(P, P1 + P2)\n>>> eq2 = Eqn(P1 / (A1 * E1), P2 / (A2 * E2))\n>>> P1_val = (eq1 - P2).swap\n>>> P1_val\nEquation(P1, P - P2)\n>>> eq2 = eq2.subs(P1_val)\n>>> eq2\nEquation((P - P2)/(A1*E1), P2/(A2*E2))\n>>> P2_val = solve(eq2.subs(P1_val), P2).args[0]\n>>> P2_val\nEquation(P2, A2*E2*P/(A1*E1 + A2*E2))\n
    \n
    \n\n

    Combining equations (Math with equations: lhs with lhs and rhs with rhs)

    \n\n
    \n
    >>> q = Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> t\nEquation(a, b/c)\n>>> q+t\nEquation(a*c + a, b/c + b/c**2)\n>>> q/t\nEquation(c, 1/c)\n>>> t**q\nEquation(a**(a*c), (b/c)**(b/c**2))\n
    \n
    \n\n

    Utility operations

    \n\n
    \n
    >>> t.reversed\nEquation(b/c, a)\n>>> t.swap\nEquation(b/c, a)\n>>> t.lhs\na\n>>> t.rhs\nb/c\n>>> t.as_Boolean()\nEq(a, b/c)\n
    \n
    \n\n

    .check() convenience method for .as_Boolean().simplify()

    \n\n
    \n
    >>> from sympy import I, pi\n>>> Equation(pi*(I+2), pi*I+2*pi).check()\nTrue\n>>> Eqn(a,a+1).check()\nFalse\n
    \n
    \n\n

    Differentiation\nDifferentiation is applied to both sides if the wrt variable appears on\nboth sides.

    \n\n
    \n
    >>> q=Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> diff(q,b)\nEquation(Derivative(a*c, b), c**(-2))\n>>> diff(q,c)\nEquation(a, -2*b/c**3)\n>>> diff(log(q),b)\nEquation(Derivative(log(a*c), b), 1/b)\n>>> diff(q,c,2)\nEquation(Derivative(a, c), 6*b/c**4)\n
    \n
    \n\n

    If you specify multiple differentiation all at once the assumption\nis order of differentiation matters and the lhs will not be\nevaluated.

    \n\n
    \n
    >>> diff(q,c,b)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
    \n
    \n\n

    To overcome this specify the order of operations.

    \n\n
    \n
    >>> diff(diff(q,c),b)\nEquation(Derivative(a, b), -2/c**3)\n
    \n
    \n\n

    But the reverse order returns an unevaulated lhs (a may depend on b).

    \n\n
    \n
    >>> diff(diff(q,b),c)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
    \n
    \n\n

    Integration can only be performed on one side at a time.

    \n\n
    \n
    >>> q=Eqn(a*c,b/c)\n>>> integrate(q,b,side='rhs')\nb**2/(2*c)\n>>> integrate(q,b,side='lhs')\na*b*c\n
    \n
    \n\n

    Make a pretty statement of integration from an equation

    \n\n
    \n
    >>> Eqn(Integral(q.lhs,b),integrate(q,b,side='rhs'))\nEquation(Integral(a*c, b), b**2/(2*c))\n
    \n
    \n\n

    Integration of each side with respect to different variables

    \n\n
    \n
    >>> q.dorhs.integrate(b).dolhs.integrate(a)\nEquation(a**2*c/2, b**2/(2*c))\n
    \n
    \n\n

    Automatic solutions using sympy solvers. THIS IS EXPERIMENTAL. Please\nreport issues at https://github.com/gutow/Algebra_with_Sympy/issues.

    \n\n
    \n
    >>> tosolv = Eqn(a - b, c/a)\n>>> solve(tosolv,a)\nFiniteSet(Equation(a, b/2 - sqrt(b**2 + 4*c)/2), Equation(a, b/2 + sqrt(b**2 + 4*c)/2))\n>>> solve(tosolv, b)\nFiniteSet(Equation(b, (a**2 - c)/a))\n>>> solve(tosolv, c)\nFiniteSet(Equation(c, a**2 - a*b))\n
    \n
    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config", "kind": "class", "doc": "

    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.__init__", "kind": "function", "doc": "

    This is a class to hold parameters that control behavior of\nthe algebra_with_sympy package.

    \n\n

    Settings

    \n\n

    Printing

    \n\n

    In interactive environments the default output of an equation is a\nhuman readable string with the two sides connected by an equals\nsign or a typeset equation with the two sides connected by an equals sign.\nprint(Eqn) or str(Eqn) will return this human readable text version of\nthe equation as well. This is consistent with python standards, but not\nsympy, where str() is supposed to return something that can be\ncopy-pasted into code. If the equation has a declared name as in eq1 =\nEqn(a,b/c) the name will be displayed to the right of the equation in\nparentheses (eg. a = b/c (eq1)). Use print(repr(Eqn)) instead of\nprint(Eqn) or repr(Eqn) instead of str(Eqn) to get a code\ncompatible version of the equation.

    \n\n

    You can adjust this behavior using some flags that impact output:

    \n\n
      \n
    • algwsym_config.output.show_code default is False.
    • \n
    • algwsym_config.output.human_text default is True.
    • \n
    • algwsym_config.output.label default is True.
    • \n
    • algwsym_config.output.latex_as_equations default is False
    • \n
    \n\n

    In interactive environments you can get both types of output by setting\nthe algwsym_config.output.show_code flag. If this flag is true\ncalls to latex and str will also print an additional line \"code\nversion: repr(Eqn)\". Thus in Jupyter you will get a line of typeset\nmathematics output preceded by the code version that can be copy-pasted.\nDefault is False.

    \n\n

    A second flag algwsym_config.output.human_text is useful in\ntext-based interactive environments such as command line python or\nipython. If this flag is true repr will return str. Thus the human\nreadable text will be printed as the output of a line that is an\nexpression containing an equation.\nDefault is True.

    \n\n

    Setting both of these flags to true in a command line or ipython\nenvironment will show both the code version and the human readable text.\nThese flags impact the behavior of the print(Eqn) statement.

    \n\n

    The third flag algwsym_config.output.label has a default value of\nTrue. Setting this to False suppresses the labeling of an equation\nwith its python name off to the right of the equation.

    \n\n

    The fourth flag algwsym_config.output.latex_as_equations has\na default value of False. Setting this to True wraps\noutput as LaTex equations wrapping them in \\begin{equation}...\\end{\nequation}.

    \n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output", "kind": "class", "doc": "

    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.__init__", "kind": "function", "doc": "

    This holds settings that impact output.

    \n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.show_code", "kind": "variable", "doc": "

    If True code versions of the equation expression will be\noutput in interactive environments. Default = False.

    \n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.human_text", "kind": "variable", "doc": "

    If True the human readable equation expression will be\noutput in text interactive environments. Default = False.

    \n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.solve_to_list", "kind": "variable", "doc": "

    If True the results of a call to solve(...) will return a\nPython list rather than a Sympy FiniteSet. This recovers\nbehavior for versions before 0.11.0.

    \n\n

    Note: setting this True means that expressions within the\nreturned solutions will not be pretty-printed in Jupyter and\nIPython.

    \n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.latex_as_equations", "kind": "variable", "doc": "

    If True any output that is returned as LaTex for\npretty-printing will be wrapped in the formal Latex for an\nequation. For example rather than

    \n\n
    $\\frac{a}{b}=c$\n
    \n\n

    the output will be

    \n\n
    \\begin{equation}\\frac{a}{b}=c\\end{equation}\n
    \n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.label", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.label", "kind": "variable", "doc": "

    \n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics", "kind": "class", "doc": "

    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.__init__", "kind": "function", "doc": "

    This class holds settings for how numerical computation and\ninputs are handled.

    \n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.integers_as_exact", "kind": "function", "doc": "

    This is a flag for informational purposes and interface\nconsistency. Changing the value will not change the behavior.

    \n\n

    To change the behavior call:

    \n\n
      \n
    • unset_integers_as_exact() to turn this feature off.
    • \n
    • set_integers_as_exact() to turn this feature on (on by\ndefault).
    • \n
    \n\n

    If set to True (the default) and if running in an\nIPython/Jupyter environment any number input without a decimal\nwill be interpreted as a sympy integer. Thus, fractions and\nrelated expressions will not evalute to floating point numbers,\nbut be maintained as exact expressions (e.g. 2/3 -> 2/3 not the\nfloat 0.6666...).

    \n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.ip": {"fullname": "algebra_with_sympy.algebraic_equation.ip", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "ip", "kind": "variable", "doc": "

    \n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.formatter": {"fullname": "algebra_with_sympy.algebraic_equation.formatter", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "formatter", "kind": "variable", "doc": "

    \n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.set_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "set_integers_as_exact", "kind": "function", "doc": "

    This operation uses sympy.interactive.session.int_to_Integer, which\ncauses any number input without a decimal to be interpreted as a sympy\ninteger, to pre-parse input cells. It also sets the flag\nalgwsym_config.numerics.integers_as_exact = True This is the default\nmode of algebra_with_sympy. To turn this off call\nunset_integers_as_exact().

    \n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.unset_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "unset_integers_as_exact", "kind": "function", "doc": "

    This operation disables forcing of numbers input without\ndecimals being interpreted as sympy integers. Numbers input without a\ndecimal may be interpreted as floating point if they are part of an\nexpression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It\nalso sets the flag algwsym_config.numerics.integers_as_exact = False.\nCall set_integers_as_exact() to avoid this conversion of rational\nfractions and related expressions to floating point. Algebra_with_sympy\nstarts with set_integers_as_exact() enabled (\nalgwsym_config.numerics.integers_as_exact = True).

    \n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eqn", "kind": "variable", "doc": "

    \n", "default_value": "<class 'sympy.core.equation.Equation'>"}, "algebra_with_sympy.algebraic_equation.units": {"fullname": "algebra_with_sympy.algebraic_equation.units", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "units", "kind": "function", "doc": "

    This operation declares the symbols to be positive values, so that sympy\nwill handle them properly when simplifying expressions containing units.\nUnits defined this way are just unit symbols. If you want units that are\naware of conversions see sympy.physics.units.

    \n\n
    Parameters
    \n\n
      \n
    • string names: a string containing a space separated list of\nsymbols to be treated as units.
    • \n
    \n\n
    Returns
    \n\n
    \n

    calls name = symbols(name,\npositive=True) in the interactive namespace for each symbol name.

    \n
    \n", "signature": "(names):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solve": {"fullname": "algebra_with_sympy.algebraic_equation.solve", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solve", "kind": "function", "doc": "

    Override of sympy solve().

    \n\n

    If passed an expression and variable(s) to solve for it behaves\nalmost the same as normal solve with dict = True, except that solutions\nare wrapped in a FiniteSet() to guarantee that the output will be pretty\nprinted in Jupyter like environments.

    \n\n

    If passed an equation or equations it returns solutions as a\nFiniteSet() of solutions, where each solution is represented by an\nequation or set of equations.

    \n\n

    To get a Python list of solutions (pre-0.11.0 behavior) rather than a\nFiniteSet issue the command algwsym_config.output.solve_to_list = True.\nThis also prevents pretty-printing in IPython and Jupyter.

    \n\n

    Examples

    \n\n
    \n
    >>> a, b, c, x, y = symbols('a b c x y', real = True)\n>>> import sys\n>>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.\n>>> eq1 = Eqn(abs(2*x+y),3)\n>>> eq2 = Eqn(abs(x + 2*y),3)\n>>> B = solve((eq1,eq2))\n
    \n
    \n\n

    Default human readable output on command line

    \n\n
    \n
    >>> B\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
    \n
    \n\n

    To get raw output turn off by setting

    \n\n
    \n
    >>> algwsym_config.output.human_text=False\n>>> B\nFiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n
    \n
    \n\n

    Pre-0.11.0 behavior where a python list of solutions is returned

    \n\n
    \n
    >>> algwsym_config.output.solve_to_list = True\n>>> solve((eq1,eq2))\n[[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]\n>>> algwsym_config.output.solve_to_list = False # reset to default\n
    \n
    \n\n

    algwsym_config.output.human_text = True with\nalgwsym_config.output.how_code=True shows both.\nIn Jupyter-like environments show_code=True yields the Raw output and\na typeset version. If show_code=False (the default) only the\ntypeset version is shown in Jupyter.

    \n\n
    \n
    >>> algwsym_config.output.show_code=True\n>>> algwsym_config.output.human_text=True\n>>> B\nCode version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
    \n
    \n", "signature": "(f, *symbols, **flags):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solveset": {"fullname": "algebra_with_sympy.algebraic_equation.solveset", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solveset", "kind": "function", "doc": "

    Very experimental override of sympy solveset, which we hope will replace\nsolve. Much is not working. It is not clear how to input a system of\nequations unless you directly select linsolve, etc...

    \n", "signature": "(f, symbols, domain=Complexes):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality": {"fullname": "algebra_with_sympy.algebraic_equation.Equality", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality", "kind": "class", "doc": "

    Extension of Equality class to include the ability to convert it to an\nEquation.

    \n", "bases": "sympy.core.relational.Equality"}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Equation", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Equation", "kind": "function", "doc": "

    Return: recasts the Equality as an Equation.

    \n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Eqn", "kind": "function", "doc": "

    Synonym for to_Equation.\nReturn: recasts the Equality as an Equation.

    \n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.default_assumptions", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.default_assumptions", "kind": "variable", "doc": "

    \n", "default_value": "{}"}, "algebra_with_sympy.algebraic_equation.Eq": {"fullname": "algebra_with_sympy.algebraic_equation.Eq", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eq", "kind": "variable", "doc": "

    \n", "default_value": "<class 'algebra_with_sympy.algebraic_equation.Equality'>"}, "algebra_with_sympy.algebraic_equation.abs": {"fullname": "algebra_with_sympy.algebraic_equation.abs", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "abs", "kind": "variable", "doc": "

    \n", "default_value": "Abs"}, "algebra_with_sympy.preparser": {"fullname": "algebra_with_sympy.preparser", "modulename": "algebra_with_sympy.preparser", "kind": "module", "doc": "

    \n"}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"fullname": "algebra_with_sympy.preparser.algebra_with_sympy_preparser", "modulename": "algebra_with_sympy.preparser", "qualname": "algebra_with_sympy_preparser", "kind": "function", "doc": "

    In IPython compatible environments (Jupyter, IPython, etc...) this supports\na special compact input method for equations.

    \n\n

    The syntax supported is equation_name =@ equation.lhs = equation.rhs,\nwhere equation_name is a valid Python name that can be used to refer to\nthe equation later. equation.lhs is the left-hand side of the equation\nand equation.rhs is the right-hand side of the equation. Each side of the\nequation must parse into a valid Sympy expression.

    \n\n

    Note: This does not support line continuation. Long equations should be\nbuilt by combining expressions using names short enough to do this on one\nline. The alternative is to use equation_name = Eqn(long ...\nexpressions ... with ... multiple ... lines).

    \n\n

    Note: If the equation_name is omitted the equation will be formed,\nbut it will not be assigned to a name that can be used to refer to it\nlater. You may be able to access it through one of the special IPython\nunderscore names. This is not recommended.

    \n\n

    THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT\nBEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED\nDIRECTLY BY A USER

    \n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.preparser.integers_as_exact": {"fullname": "algebra_with_sympy.preparser.integers_as_exact", "modulename": "algebra_with_sympy.preparser", "qualname": "integers_as_exact", "kind": "function", "doc": "

    This preparser uses sympy.interactive.session.int_to_Integer to\nconvert numbers without decimal points into sympy integers so that math\non them will be exact rather than defaulting to floating point. This\nshould not be called directly by the user. It is plugged into the\nIPython preparsing sequence when the feature is requested. The default for\nAlgebra_with_sympy is to use this preparser. This can be turned on and\noff using the Algebra_with_sympy functions:

    \n\n
      \n
    • set_integers_as_exact()
    • \n
    • unset_integers_as_exact()\nNOTE: This option does not work in plain vanilla Python sessions. You\nmust be running in an IPython environment (Jupyter, Notebook, Colab,\netc...).
    • \n
    \n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.version": {"fullname": "algebra_with_sympy.version", "modulename": "algebra_with_sympy.version", "kind": "module", "doc": "

    \n"}}, "docInfo": {"algebra_with_sympy": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3354}, "algebra_with_sympy.algwsym_version": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 4002}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 530}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 65}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 50}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 15}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 126}, "algebra_with_sympy.algebraic_equation.ip": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.formatter": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 69}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 102}, "algebra_with_sympy.algebraic_equation.Eqn": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.units": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 100}, "algebra_with_sympy.algebraic_equation.solve": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 834}, "algebra_with_sympy.algebraic_equation.solveset": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 38}, "algebra_with_sympy.algebraic_equation.Equality": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 17}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.Eq": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.abs": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 229}, "algebra_with_sympy.preparser.integers_as_exact": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "algebra_with_sympy.version": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 33, "save": true}, "index": {"qualname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 13}}}}, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}}, "fullname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 33, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 13}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 33}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 33}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algwsym_version": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 4, "x": {"2": {"7": {"docs": {"algebra_with_sympy.algwsym_version": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.units": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 3.1622776601683795}}, "df": 13, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "doc": {"root": {"0": {"0": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"0": {"6": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 6}, "1": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.47213595499958}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "2": {"0": {"2": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "/": {"3": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2}, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "3": {"9": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}}, "df": 3}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "5": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "6": {"6": {"6": {"6": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "9": {"3": {"3": {"4": {"3": {"2": {"5": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 29.866369046136157}, "algebra_with_sympy.algwsym_version": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 50.049975024968795}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 11}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 20.149441679609886}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 5.830951894845301}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 4.69041575982343}, "algebra_with_sympy.version": {"tf": 1.7320508075688772}}, "df": 33, "a": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 7.483314773547883}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}}, "df": 11, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "d": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 6.164414002968976}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.872983346207417}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}}, "df": 1}, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4, "q": {"1": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}, "4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "5": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 8.366600265340756}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.605551275463989}}, "df": 11, "s": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 5}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 7}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 8, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 5.5677643628300215}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 12, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 5, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "n": {"docs": {"algebra_with_sympy": {"tf": 6.855654600401044}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 4}, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 5}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 12}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 7, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.4641016151377544}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 7.14142842854285}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 12, "f": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "f": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.605551275463989}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 5.385164807134504}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3}}, "df": 12}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 13}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "e": {"docs": {"algebra_with_sympy": {"tf": 10.099504938362077}, "algebra_with_sympy.algebraic_equation": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.7416573867739413}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 17, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "m": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 7.810249675906654}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 14, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 6.708203932499369}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": null}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "\\": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 16.522711641858304}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 6.708203932499369}}, "df": 3}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}}, "df": 1, "y": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}}, "df": 1}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "r": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "#": {"2": {"1": {"3": {"3": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1, "p": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}, "*": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 6}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}}, "df": 3, "y": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7}, "e": {"docs": {"algebra_with_sympy": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.6457513110645907}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 14, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "g": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "u": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 2}, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2.23606797749979}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "o": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 8, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "*": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}, "k": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 3, "^": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "q": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4.47213595499958}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"algebra_with_sympy": {"fullname": "algebra_with_sympy", "modulename": "algebra_with_sympy", "kind": "module", "doc": "

    Algebraic Equations with SymPy

    \n\n

    Introduction | Output Formatting\n| Installation |\nTry Live | Issues or Comments |\nChange Log |\nLicense\n| GIT Repository\n| PyPi Link

    \n\n

    Website/Documentation (including API)

    \n\n

    Introduction

    \n\n

    \n\n

    This tool defines relations that all high school and college students would\nrecognize as mathematical equations. \nThey consist of a left hand side (lhs) and a right hand side (rhs) connected by\nthe relation operator \"=\". In addition, it sets some convenient defaults and \nprovides some controls of output formatting that may be useful even if\nyou do not use the Equation class (see Conveniences for\nSymPy).

    \n\n

    This tool applies operations to both sides of the equation simultaneously, just\nas students are taught to do when \nattempting to isolate (solve for) a variable. Thus the statement Equation/b\nyields a new equation Equation.lhs/b = Equation.rhs/b

    \n\n

    The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra\nin a stepwise fashion using as close to standard mathematical notation as \npossible. In this way more people can successfully perform \nalgebraic rearrangements without stumbling\nover missed details such as a negative sign.

    \n\n

    A simple example as it would appear in a Jupyter \nnotebook is shown immediately below:

    \n\n

    \"screenshot

    \n\n

    The last cell illustrates how it is possible to substitute numbers with \nunits into the solved equation to calculate a numerical solution with \nproper units. The units(...) operation is part this package, not Sympy.

    \n\n

    In IPython environments (IPython, Jupyter, Google Colab, etc...) there is \nalso a shorthand syntax for entering equations provided through the IPython \npreparser. An equation can be specified as eq1 =@ a/b = c/d.

    \n\n

    \"screenshot

    \n\n

    If no Python name is \nspecified for the equation (no eq_name to the left of =@), the equation \nwill still be defined, but will not be easily accessible for further \ncomputation. The =@ symbol combination was chosen to avoid conflicts with \nreserved python symbols while minimizing impacts on syntax highlighting \nand autoformatting.

    \n\n

    More examples of the capabilities of Algebra with Sympy are \nhere.

    \n\n

    Many math packages such as SageMath \nand Maxima have similar capabilities, \nbut require more knowledge of command syntax, plus they cannot easily be \ninstalled in a generic python environment.

    \n\n

    Convenience Tools and Defaults for Interactive Use of SymPy

    \n\n

    Even if you do not use the Equation class, there are some convenience \ntools and defaults that will probably make interactive use of SymPy in \nJupyter/IPython environments easier:

    \n\n
      \n
    • By default, all numbers in Sympy expressions without decimal points are \ninterpreted as integers (e.g. 2/3*x, where x is a sympy symbol, -> \n2*x/3 not x*0.6666..., but if x is just a plain Python object then 2/3*x \n-> x*0.66666...). This can be turned off with unset_integers_as_exact(), \nwhich leads to standard Python behavior (2/3*x -> x*0.6666...) even for \nSympy expressions. Turn on with set_integers_as_exact(). When on the flag\nalgwsym_config.numerics.integers_as_exact = True.
    • \n
    • Results of solve() are wrapped in FiniteSet() to force pretty-printing \nof all of a solution set. See Controlling the Format of Interactive \nOutputs.
    • \n
    • It is possible to set the default display to show both the pretty-printed \nresult and the code version simultaneously. See Controlling the Format of Interactive \nOutputs.
    • \n
    \n\n

    Controlling the Format of Interactive Outputs

    \n\n

    \n\n
      \n
    • These controls impact all Sympy objects and the Equation class.
    • \n
    • In graphical environments (Jupyter) you will get rendered Latex such as \n$\\frac{a}{b} = \\frac{c}{d}$ or $e^{\\frac{-x^2}{\\sigma^2}}$. To also see the \ncode representation (what can be copied and pasted for \nadditional computation) set algwsym_config.output.show_code = True. \nThis will print the code version (e.g. Equation(a,b/c)) of equations \nand sympy expression in addition to the human readable version. This code \nversion can be accessed directly by calling repr() on the \nequation or expression.
    • \n
    \n\n
      \n
    • In interactive text environments (IPython and command line) The human \nreadable string version of Sympy expressions are returned (for Equations a \n= b rather than Equation(a,b)). This is equivalent to Calling print() \nor str() on an expression.

      \n\n
        \n
      • To have the code version (can be copied and pasted as a \nPython statement) returned, set algwsym_config.output.human_text = False.
      • \n
      • Setting both algwsym_config.output.human_text = True\nand algwsym_config.output.show_code = True, will return both the \ncode and human readable versions.
      • \n
    • \n
    • The equation label can be turned off by setting\nalgwsym_config.output.label = False.

    • \n
    • Automatic wrapping of Equations as Latex equations can be activated \nby setting algwsym_config.output.latex_as_equations to True. The \ndefault is False. Setting this to True wraps output as LaTex equations,\nwrapping them in \\begin{equation}...\\end{equation}. Equations formatted \nthis way will not be labeled with the internal name for the equation, \nindependent of the setting of algwsym_config.output.label.

    • \n
    • By default solutions output by solve() are returned as a SymPy \nFiniteSet() to force typesetting of the included solutions. To get Python \nlists instead you can override this for the whole session by setting\nalgwsym_config.output.solve_to_list = True. For a one-off, simply \nwrap the output of a solve in list() (e.g. list(solve(...))). One \nadvantage of list mode is that lists can be ordered. When\nalgwsym_config.output.solve_to_list = True solve() maintains the \nsolutions in the order the solve for variables were input.

    • \n
    \n\n

    Setup/Installation

    \n\n

    \n\n
      \n
    1. Use pip to install in your python environment: \npip install -U Algebra-with-SymPy
    2. \n
    3. To use in a running python session issue\nthe following command : from algebra_with_sympy import *. \nThis will also import the SymPy tools.
    4. \n
    5. If you want to isolate this tool from the global namespace you are \nworking with change the import statement \nto import algebra_with_sympy as spa, where \nspa stands for \"SymPy Algebra\". Then all calls would be made to \nspa.funcname(). WARNING: Doing this makes shorthand equation input and \ncontrol of interactive output formats unavailable. To recover this \nfunctionality the following code must be run in the interactive session.
    6. \n
    \n\n
    Equation = spa.Equation\nEqn = Equation\nalgwsym_config = spa.algwsym_config\n
    \n\n

    Try in binder

    \n\n

    \n\"Binder\"

    \n\n

    Issues or Comments

    \n\n

    \n\n\n\n

    Change Log

    \n\n

    \n\n
      \n
    • 1.1.0 (July 21, 2024)\n
        \n
      • Setting integers as exact (set_integers_as_exact(), the default) now \nonly sets integers as exact within Sympy and Algebra_with_Sympy \nexpressions. This increases compatibility with other packages that \ndepend on integers being Python integers.
      • \n
      • Refuse to import Algebra_with_Sympy if an incompatible \nversion of Sympy is installed in the environment.
      • \n
      • Added warning explaining how to install a compatible version of Sympy.
      • \n
    • \n
    • 1.0.2 (July 5, 2024)\n
        \n
      • Removed requirements for Jupyter and Jupyterlab as code will work in \nvanilla python or Google Colab.
      • \n
      • Workaround for Google Colab's inconsistent handling of mixed Latex and \nplain text strings. This impacted display of equation labels in Colab.
      • \n
      • BUG FIX: catch IPython not installed so that can run in plain vanilla \npython.
      • \n
    • \n
    • 1.0.1 (May 22, 2024)\n
        \n
      • BUG FIX: equation labels that include underscore characters \"_\" are now \naccepted.
      • \n
      • BUG FIX: wrapping equations formatted as LaTex equation (ie. surrounded \nby \\begin{equation}...\\end{equation}) in the $..$ code used to \nindicate markdown for MathJax was causing output errors in Quarto when \noutputing to .tex or .pdf. This is now fixed without negatively \nimpacting MathJax rendering.
      • \n
      • BUG FIX: Singleton results of solve unnecessarily wrapped by extra list \nor finiteset. No longer double nested.
      • \n
      • BUG FIX: When returning lists make solve respect user order of solutions.
      • \n
      • BUG FIX: Equation output threw error when Algebra_with_Sympy was \nimported as a submodule. Equation labeling turned off for this type of \nimport to avoid error.
      • \n
      • BUG FIX: Equation labels are now copyable even with the newer MathJax \ncommonHTML rendering.
      • \n
      • Updates to requirements.txt.
      • \n
      • Documentation updates.
      • \n
    • \n
    • 1.0.0 (January 2, 2024)\n
        \n
      • Added convenience operation units(...) which takes a string of space \nseparated symbols to use as units. This simply declares the symbols \nto be positive, making them behave as units. This does not create units \nthat know about conversions, prefixes or systems of units. This lack \nis on purpose to provide units that require the user to worry about \nconversions (ideal in a teaching situation). To get units with built-in \nconversions see sympy.physics.units.
      • \n
      • Fixed issue #23 where cos() multiplied by a factor was not the same \ntype of object after simplify() acted on an expression. Required \nembedding the Equation type in the sympy library. Until Equation is \nincorporated into the primary Sympy repository a customized version of \nthe latest stable release will be used.
      • \n
      • Fixed issue where trailing comments (ie. # a comment at the end of a \nline) lead to input errors using compact =@ notation.
      • \n
      • algwsym_config.output.latex_as_equations has a default value of False.\n Setting this to True wraps output as LaTex equations wrapping them \nin \\begin{equation}...\\end{equation}. Equations formatted this way \nwill not be labeled with the internal name for the equation.
      • \n
    • \n
    • 0.12.0 (July 12, 2023)\n
        \n
      • Now defaults to interpreting numbers without decimal points as integers. \nThis can be turned off with unset_integers_as_exact() and on with\nset_integers_as_exact(). When on the flag\nalgwsym_config.numerics.integers_as_exact = True.
      • \n
    • \n
    • 0.11.0 (June 5, 2023)\n
        \n
      • Formatting of FiniteSets overridden so that the contents always\npretty-print. This removes the necessity of special flags to get \npretty output from solve.
      • \n
      • Sympy solve() now works reliably with equations and outputs \npretty-printed solutions.
      • \n
      • Added option algwsym_config.output.solve_to_list = True which causes \nsolve() to return solutions sets as Python lists. Using this option \nprevents pretty-printing of the solutions produced by solve().
      • \n
      • algwsym_config.output.show_code and \nalgwsym_config.output.human_text now work for all sympy objects, not \njust Equation objects. This works\nin terminal, IPython terminal and Jupyter. This is achieved by hooking \ninto the python display_hook and IPython display_formatter.
      • \n
      • Added jupyter to requirements.txt so that virtual environment builds\nwill include jupyter.
      • \n
      • The way __version__ was handled could break pip install. Changed to\ngenerating the internal version during setup. This means the version\nis now available as algwsym_version.
      • \n
    • \n
    • 0.10.0 (Sep. 5, 2022)\n
        \n
      • Documentation updates and fixes.
      • \n
      • Significantly increased test coverage (~98%).
      • \n
      • Support for Eqn.rewrite(Add)
      • \n
      • Solving (e.g. solve(Eqn,x)) now supported fully. Still experimental.
      • \n
      • Bug fix: latex printing now supports custom printer.
      • \n
      • Substitution into an Equation using Equations is now \nsupported (e.g. eq1.subs(eq2, eq3, ...)).
      • \n
      • algebra_with_sympy.__version__ is now available for version checking \nwithin python.
      • \n
      • Bug fix: preparsing for =@ syntax no longer blocks obj? syntax for \ngetting docstrings in ipython.
      • \n
      • More robust determination of equation names for labeling.
      • \n
    • \n
    • 0.9.4 (Aug. 11, 2022)\n
        \n
      • Update to deal with new Sympy function piecewise_exclusive in v1.11.
      • \n
      • Added user warning if a function does not extend for use with Equations \nas expected. This also allows the package to be used even when a function \nextension does fail.
      • \n
      • Simplification of documentation preparation.
      • \n
      • Typo fixes in preparser error messages.
      • \n
    • \n
    • 0.9.3 (Aug. 9, 2022)\n
        \n
      • Added check for new enough version of IPython to use the preparser.
      • \n
      • If IPython version too old, issue warning and do not accept =@ shorthand.
      • \n
    • \n
    • 0.9.2 (Jun. 5, 2022)\n
        \n
      • =@ shorthand syntax for defining equations in IPython compatible \nenvironments.
      • \n
      • Fixed bug where root() override called sqrt() on bare expressions.
      • \n
    • \n
    • 0.9.1 (Mar. 24, 2022)\n
        \n
      • Equations labeled with their python name, if they have one.
      • \n
      • Added flags to adjust human readable output and equation labeling.
      • \n
      • Accept equation as function argument in any position.
      • \n
      • First pass at solve() accepting equations.
      • \n
      • Added override of root() to avoid warning messages.
      • \n
      • More unit tests.
      • \n
      • First pass at documentation.
      • \n
    • \n
    • 0.9.0 functionality equivalent to extension of SymPy in\nPR#21333.
    • \n
    \n\n

    licensed under GNU V3 license

    \n\n

    \nThis program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.

    \n\n

    Copyright - Algebra with Sympy Contributors 2021, 2022, 2023, 2024

    \n\n

    Development Notes

    \n\n

    General | Make Docs | \nRunning Tests | \nBuild PyPi Package|

    \n\n

    General Notes

    \n\n

    \n\n
      \n
    • TODOs\n
        \n
      • Test collect when there isn't an available _eval_collect (not sure how \nto get there).
      • \n
      • Test for _binary_op NotImplemented error (not sure how to get there).
      • \n
    • \n
    • To consider\n
        \n
      • Include Sympy Plot Backends\nin the default setup.
      • \n
      • Change Equation constructor to accept Equality, Set, List or \nlhs, rhs, rather than just lhs, rhs.
      • \n
      • Extend .subs to accept .subs(a=2*c, b = sin(q), ...).
      • \n
      • MathLive on another web page as possible\ninput engine.
      • \n
    • \n
    \n\n

    Constructing the Documentation

    \n\n

    \n\n
      \n
    1. Make sure pdoc is installed and updated in the virtual environment pip \ninstall -U pdoc.
    2. \n
    3. Update any .md files included in _init_.py.\n
        \n
      • Generally URLs should be absolute, not relative.
      • \n
    4. \n
    5. At the root level run pdoc \n\npdoc --logo https://gutow.github.io/Algebra_with_Sympy/alg_w_sympy.svg \n--logo-link https://gutow.github.io/Algebra_with_Sympy/\n--footer-text \"Algebra with Sympy vX.X.X\" --math -html -o docs \n./algebra_with_sympy\n\nwhere X.X.X is the version number.
    6. \n
    \n\n

    Tasks for Documentation

    \n\n

    \n\n
      \n
    • Readme.md & Development Notes.md\n
        \n
      • Use absolute path to github pages for more examples.
      • \n
    • \n
    \n\n

    Running Tests

    \n\n

    \n\n
      \n
    1. Install updated pytest in the virtual environment:\n
      pipenv shell\npip install -U pytest\n
    2. \n
    3. Run standard tests:\npytest --ignore='Developer Testing' --ignore-glob='*test_preparser.py'.
    4. \n
    5. Run preparser tests:\nipython -m pytest tests/test_preparser.py
    6. \n
    7. Run doctests:\npytest --ignore='tests' --ignore='Developer Testing' \n--ignore-glob='*old*' --doctest-modules
    8. \n
    \n\n

    You can run all the tests using the dotests script: ./dotests.sh.

    \n\n

    NOTE: Some warnings about invalid escape characters are expected because \nraw strings are being passed with specialized LaTex escaped characters.

    \n\n

    Building PyPi package

    \n\n

    \n\n
      \n
    1. Make sure to update the version number in setup.py first.
    2. \n
    3. Install updated setuptools and twine in the virtual environment:\n
      pipenv shell\npip install -U setuptools wheel twine\n
    4. \n
    5. Build the distribution python -m setup sdist bdist_wheel.
    6. \n
    7. Test it on test.pypi.org.\n
        \n
      1. Upload it (you will need an account on test.pypi.org):\npython -m twine upload --repository testpypi dist/*.
      2. \n
      3. Create a new virtual environment and test install into it:\n
        exit # to get out of the current environment\ncd <somewhere>\nmkdir <new virtual environment>\ncd <new directory>\npipenv shell #creates the new environment and enters it.\npip install -i https://test.pypi.org/..... # copy actual link from the\n                                           # repository on test.pypi.\n
        \nThere are often install issues because sometimes only older versions of\nsome of the required packages are available on test.pypi.org. If this\nis the only problem change the version to end in rc0 for release\ncandidate and try it on the regular pypi.org as described below for\nreleasing on PyPi.
      4. \n
      5. After install test by running a jupyter notebook in the virtual \nenvironment.
      6. \n
    8. \n
    \n\n

    Releasing on PyPi

    \n\n

    \nProceed only if testing of the build is successful.

    \n\n
      \n
    1. Double check the version number in version.py.
    2. \n
    3. Rebuild the release: python -m setup sdist bdist_wheel.
    4. \n
    5. Upload it: python -m twine upload dist/*
    6. \n
    7. Make sure it works by installing it in a clean virtual environment. This\nis the same as on test.pypi.org except without -i https://test.pypy.... If\nit does not work, pull the release.
    8. \n
    \n"}, "algebra_with_sympy.proper_sympy": {"fullname": "algebra_with_sympy.proper_sympy", "modulename": "algebra_with_sympy", "qualname": "proper_sympy", "kind": "variable", "doc": "

    \n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation": {"fullname": "algebra_with_sympy.algebraic_equation", "modulename": "algebra_with_sympy.algebraic_equation", "kind": "module", "doc": "

    This package uses a special version of sympy which defines an equation \nwith a left-hand-side (lhs) and a right-\nhand-side (rhs) connected by the \"=\" operator (e.g. p*V = n*R*T).

    \n\n

    The intent is to allow using the mathematical tools in SymPy to rearrange\nequations and perform algebra in a stepwise fashion. In this way more people\ncan successfully perform algebraic rearrangements without stumbling over\nmissed details such as a negative sign. This mimics the capabilities available\nin SageMath and\nMaxima.

    \n\n

    This package also provides convenient settings for interactive use on the \ncommand line, in ipython and Jupyter notebook environments. See the \ndocumentation at https://gutow.github.io/Algebra_with_Sympy/.

    \n\n

    Explanation

    \n\n

    This class defines relations that all high school and college students\nwould recognize as mathematical equations. At present only the \"=\" relation\noperator is recognized.

    \n\n

    This class is intended to allow using the mathematical tools in SymPy to\nrearrange equations and perform algebra in a stepwise fashion. In this\nway more people can successfully perform algebraic rearrangements without\nstumbling over missed details such as a negative sign.

    \n\n

    Create an equation with the call Equation(lhs,rhs), where lhs and\nrhs are any valid Sympy expression. Eqn(...) is a synonym for\nEquation(...).

    \n\n

    Parameters

    \n\n

    lhs: sympy expression, class Expr.\nrhs: sympy expression, class Expr.\nkwargs:

    \n\n

    Examples

    \n\n

    NOTE: All the examples below are in vanilla python. You can get human\nreadable eqautions \"lhs = rhs\" in vanilla python by adjusting the settings\nin algwsym_config (see it's documentation). Output is human readable by\ndefault in IPython and Jupyter environments.

    \n\n
    \n
    >>> from algebra_with_sympy import *\n>>> a, b, c, x = var('a b c x')\n>>> Equation(a,b/c)\nEquation(a, b/c)\n>>> t=Eqn(a,b/c)\n>>> t\nEquation(a, b/c)\n>>> t*c\nEquation(a*c, b)\n>>> c*t\nEquation(a*c, b)\n>>> exp(t)\nEquation(exp(a), exp(b/c))\n>>> exp(log(t))\nEquation(a, b/c)\n
    \n
    \n\n

    Simplification and Expansion

    \n\n
    \n
    >>> f = Eqn(x**2 - 1, c)\n>>> f\nEquation(x**2 - 1, c)\n>>> f/(x+1)\nEquation((x**2 - 1)/(x + 1), c/(x + 1))\n>>> (f/(x+1)).simplify()\nEquation(x - 1, c/(x + 1))\n>>> simplify(f/(x+1))\nEquation(x - 1, c/(x + 1))\n>>> (f/(x+1)).expand()\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> expand(f/(x+1))\nEquation(x**2/(x + 1) - 1/(x + 1), c/(x + 1))\n>>> factor(f)\nEquation((x - 1)*(x + 1), c)\n>>> f.factor()\nEquation((x - 1)*(x + 1), c)\n>>> f2 = f+a*x**2+b*x +c\n>>> f2\nEquation(a*x**2 + b*x + c + x**2 - 1, a*x**2 + b*x + 2*c)\n>>> collect(f2,x)\nEquation(b*x + c + x**2*(a + 1) - 1, a*x**2 + b*x + 2*c)\n
    \n
    \n\n

    Apply operation to only one side

    \n\n
    \n
    >>> poly = Eqn(a*x**2 + b*x + c*x**2, a*x**3 + b*x**3 + c*x)\n>>> poly.applyrhs(factor,x)\nEquation(a*x**2 + b*x + c*x**2, x*(c + x**2*(a + b)))\n>>> poly.applylhs(factor)\nEquation(x*(a*x + b + c*x), a*x**3 + b*x**3 + c*x)\n>>> poly.applylhs(collect,x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n
    \n
    \n\n

    .apply... also works with user defined python functions

    \n\n
    \n
    >>> def addsquare(eqn):\n...     return eqn+eqn**2\n...\n>>> t.apply(addsquare)\nEquation(a**2 + a, b**2/c**2 + b/c)\n>>> t.applyrhs(addsquare)\nEquation(a, b**2/c**2 + b/c)\n>>> t.apply(addsquare, side = 'rhs')\nEquation(a, b**2/c**2 + b/c)\n>>> t.applylhs(addsquare)\nEquation(a**2 + a, b/c)\n>>> addsquare(t)\nEquation(a**2 + a, b**2/c**2 + b/c)\n
    \n
    \n\n

    Inaddition to .apply... there is also the less general .do,\n.dolhs, .dorhs, which only works for operations defined on the\nExpr class (e.g..collect(), .factor(), .expand(), etc...).

    \n\n
    \n
    >>> poly.dolhs.collect(x)\nEquation(b*x + x**2*(a + c), a*x**3 + b*x**3 + c*x)\n>>> poly.dorhs.collect(x)\nEquation(a*x**2 + b*x + c*x**2, c*x + x**3*(a + b))\n>>> poly.do.collect(x)\nEquation(b*x + x**2*(a + c), c*x + x**3*(a + b))\n>>> poly.dorhs.factor()\nEquation(a*x**2 + b*x + c*x**2, x*(a*x**2 + b*x**2 + c))\n
    \n
    \n\n

    poly.do.exp() or other sympy math functions will raise an error.

    \n\n

    Rearranging an equation (simple example made complicated as illustration)

    \n\n
    \n
    >>> p, V, n, R, T = var('p V n R T')\n>>> eq1=Eqn(p*V,n*R*T)\n>>> eq1\nEquation(V*p, R*T*n)\n>>> eq2 =eq1/V\n>>> eq2\nEquation(p, R*T*n/V)\n>>> eq3 = eq2/R/T\n>>> eq3\nEquation(p/(R*T), n/V)\n>>> eq4 = eq3*R/p\n>>> eq4\nEquation(1/T, R*n/(V*p))\n>>> 1/eq4\nEquation(T, V*p/(R*n))\n>>> eq5 = 1/eq4 - T\n>>> eq5\nEquation(0, -T + V*p/(R*n))\n
    \n
    \n\n

    Substitution (#'s and units)

    \n\n
    \n
    >>> L, atm, mol, K = var('L atm mol K', positive=True, real=True) # units\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L})\nEquation(p, 0.9334325*atm)\n>>> eq2.subs({R:0.08206*L*atm/mol/K,T:273*K,n:1.00*mol,V:24.0*L}).evalf(4)\nEquation(p, 0.9334*atm)\n
    \n
    \n\n

    Substituting an equation into another equation:

    \n\n
    \n
    >>> P, P1, P2, A1, A2, E1, E2 = symbols("P, P1, P2, A1, A2, E1, E2")\n>>> eq1 = Eqn(P, P1 + P2)\n>>> eq2 = Eqn(P1 / (A1 * E1), P2 / (A2 * E2))\n>>> P1_val = (eq1 - P2).swap\n>>> P1_val\nEquation(P1, P - P2)\n>>> eq2 = eq2.subs(P1_val)\n>>> eq2\nEquation((P - P2)/(A1*E1), P2/(A2*E2))\n>>> P2_val = solve(eq2.subs(P1_val), P2).args[0]\n>>> P2_val\nEquation(P2, A2*E2*P/(A1*E1 + A2*E2))\n
    \n
    \n\n

    Combining equations (Math with equations: lhs with lhs and rhs with rhs)

    \n\n
    \n
    >>> q = Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> t\nEquation(a, b/c)\n>>> q+t\nEquation(a*c + a, b/c + b/c**2)\n>>> q/t\nEquation(c, 1/c)\n>>> t**q\nEquation(a**(a*c), (b/c)**(b/c**2))\n
    \n
    \n\n

    Utility operations

    \n\n
    \n
    >>> t.reversed\nEquation(b/c, a)\n>>> t.swap\nEquation(b/c, a)\n>>> t.lhs\na\n>>> t.rhs\nb/c\n>>> t.as_Boolean()\nEq(a, b/c)\n
    \n
    \n\n

    .check() convenience method for .as_Boolean().simplify()

    \n\n
    \n
    >>> from sympy import I, pi\n>>> Equation(pi*(I+2), pi*I+2*pi).check()\nTrue\n>>> Eqn(a,a+1).check()\nFalse\n
    \n
    \n\n

    Differentiation\nDifferentiation is applied to both sides if the wrt variable appears on\nboth sides.

    \n\n
    \n
    >>> q=Eqn(a*c, b/c**2)\n>>> q\nEquation(a*c, b/c**2)\n>>> diff(q,b)\nEquation(Derivative(a*c, b), c**(-2))\n>>> diff(q,c)\nEquation(a, -2*b/c**3)\n>>> diff(log(q),b)\nEquation(Derivative(log(a*c), b), 1/b)\n>>> diff(q,c,2)\nEquation(Derivative(a, c), 6*b/c**4)\n
    \n
    \n\n

    If you specify multiple differentiation all at once the assumption\nis order of differentiation matters and the lhs will not be\nevaluated.

    \n\n
    \n
    >>> diff(q,c,b)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
    \n
    \n\n

    To overcome this specify the order of operations.

    \n\n
    \n
    >>> diff(diff(q,c),b)\nEquation(Derivative(a, b), -2/c**3)\n
    \n
    \n\n

    But the reverse order returns an unevaulated lhs (a may depend on b).

    \n\n
    \n
    >>> diff(diff(q,b),c)\nEquation(Derivative(a*c, b, c), -2/c**3)\n
    \n
    \n\n

    Integration can only be performed on one side at a time.

    \n\n
    \n
    >>> q=Eqn(a*c,b/c)\n>>> integrate(q,b,side='rhs')\nb**2/(2*c)\n>>> integrate(q,b,side='lhs')\na*b*c\n
    \n
    \n\n

    Make a pretty statement of integration from an equation

    \n\n
    \n
    >>> Eqn(Integral(q.lhs,b),integrate(q,b,side='rhs'))\nEquation(Integral(a*c, b), b**2/(2*c))\n
    \n
    \n\n

    Integration of each side with respect to different variables

    \n\n
    \n
    >>> q.dorhs.integrate(b).dolhs.integrate(a)\nEquation(a**2*c/2, b**2/(2*c))\n
    \n
    \n\n

    Automatic solutions using sympy solvers. THIS IS EXPERIMENTAL. Please\nreport issues at https://github.com/gutow/Algebra_with_Sympy/issues.

    \n\n
    \n
    >>> tosolv = Eqn(a - b, c/a)\n>>> solve(tosolv,a)\nFiniteSet(Equation(a, b/2 - sqrt(b**2 + 4*c)/2), Equation(a, b/2 + sqrt(b**2 + 4*c)/2))\n>>> solve(tosolv, b)\nFiniteSet(Equation(b, (a**2 - c)/a))\n>>> solve(tosolv, c)\nFiniteSet(Equation(c, a**2 - a*b))\n
    \n
    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config", "kind": "class", "doc": "

    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.__init__", "kind": "function", "doc": "

    This is a class to hold parameters that control behavior of\nthe algebra_with_sympy package.

    \n\n

    Settings

    \n\n

    Printing

    \n\n

    In interactive environments the default output of an equation is a\nhuman readable string with the two sides connected by an equals\nsign or a typeset equation with the two sides connected by an equals sign.\nprint(Eqn) or str(Eqn) will return this human readable text version of\nthe equation as well. This is consistent with python standards, but not\nsympy, where str() is supposed to return something that can be\ncopy-pasted into code. If the equation has a declared name as in eq1 =\nEqn(a,b/c) the name will be displayed to the right of the equation in\nparentheses (eg. a = b/c (eq1)). Use print(repr(Eqn)) instead of\nprint(Eqn) or repr(Eqn) instead of str(Eqn) to get a code\ncompatible version of the equation.

    \n\n

    You can adjust this behavior using some flags that impact output:

    \n\n
      \n
    • algwsym_config.output.show_code default is False.
    • \n
    • algwsym_config.output.human_text default is True.
    • \n
    • algwsym_config.output.label default is True.
    • \n
    • algwsym_config.output.latex_as_equations default is False
    • \n
    \n\n

    In interactive environments you can get both types of output by setting\nthe algwsym_config.output.show_code flag. If this flag is true\ncalls to latex and str will also print an additional line \"code\nversion: repr(Eqn)\". Thus in Jupyter you will get a line of typeset\nmathematics output preceded by the code version that can be copy-pasted.\nDefault is False.

    \n\n

    A second flag algwsym_config.output.human_text is useful in\ntext-based interactive environments such as command line python or\nipython. If this flag is true repr will return str. Thus the human\nreadable text will be printed as the output of a line that is an\nexpression containing an equation.\nDefault is True.

    \n\n

    Setting both of these flags to true in a command line or ipython\nenvironment will show both the code version and the human readable text.\nThese flags impact the behavior of the print(Eqn) statement.

    \n\n

    The third flag algwsym_config.output.label has a default value of\nTrue. Setting this to False suppresses the labeling of an equation\nwith its python name off to the right of the equation.

    \n\n

    The fourth flag algwsym_config.output.latex_as_equations has\na default value of False. Setting this to True wraps\noutput as LaTex equations wrapping them in \\begin{equation}...\\end{\nequation}.

    \n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output", "kind": "class", "doc": "

    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.__init__", "kind": "function", "doc": "

    This holds settings that impact output.

    \n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.show_code", "kind": "variable", "doc": "

    If True code versions of the equation expression will be\noutput in interactive environments. Default = False.

    \n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.human_text", "kind": "variable", "doc": "

    If True the human readable equation expression will be\noutput in text interactive environments. Default = False.

    \n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.solve_to_list", "kind": "variable", "doc": "

    If True the results of a call to solve(...) will return a\nPython list rather than a Sympy FiniteSet. This recovers\nbehavior for versions before 0.11.0.

    \n\n

    Note: setting this True means that expressions within the\nreturned solutions will not be pretty-printed in Jupyter and\nIPython.

    \n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.latex_as_equations", "kind": "variable", "doc": "

    If True any output that is returned as LaTex for\npretty-printing will be wrapped in the formal Latex for an\nequation. For example rather than

    \n\n
    $\\frac{a}{b}=c$\n
    \n\n

    the output will be

    \n\n
    \\begin{equation}\\frac{a}{b}=c\\end{equation}\n
    \n", "default_value": "False"}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.output.label", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.output.label", "kind": "variable", "doc": "

    \n", "default_value": "True"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics", "kind": "class", "doc": "

    \n"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.__init__", "kind": "function", "doc": "

    This class holds settings for how numerical computation and\ninputs are handled.

    \n", "signature": "()"}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "algwsym_config.numerics.integers_as_exact", "kind": "function", "doc": "

    This is a flag for informational purposes and interface\nconsistency. Changing the value will not change the behavior.

    \n\n

    To change the behavior call:

    \n\n
      \n
    • unset_integers_as_exact() to turn this feature off.
    • \n
    • set_integers_as_exact() to turn this feature on (on by\ndefault).
    • \n
    \n\n

    If set to True (the default) and if running in an\nIPython/Jupyter environment any number input without a decimal\nwill be interpreted as a sympy integer. Thus, fractions and\nrelated expressions will not evalute to floating point numbers,\nbut be maintained as exact expressions (e.g. 2/3 -> 2/3 not the\nfloat 0.6666...).

    \n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.ip": {"fullname": "algebra_with_sympy.algebraic_equation.ip", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "ip", "kind": "variable", "doc": "

    \n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.formatter": {"fullname": "algebra_with_sympy.algebraic_equation.formatter", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "formatter", "kind": "variable", "doc": "

    \n", "default_value": "None"}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.set_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "set_integers_as_exact", "kind": "function", "doc": "

    This operation causes any number input without a decimal that is\npart of a Sympy expression to be interpreted as a sympy\ninteger, by using a custom preparser to cast integers within Sympy\nexpressions as Sympy integers (Integer()). It also sets the flag\nalgwsym_config.numerics.integers_as_exact = True This is the default\nmode of algebra_with_sympy. To turn this off call\nunset_integers_as_exact().

    \n\n

    NOTE: 2/3 --> 0.6666... even when this is set, but 2*x/3 -->\nInteger(2)/Integer(3)*x if x is a sympy object. If x is just a Python\nobject 2*x/3 --> x*0.6666666666....

    \n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"fullname": "algebra_with_sympy.algebraic_equation.unset_integers_as_exact", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "unset_integers_as_exact", "kind": "function", "doc": "

    This operation disables forcing of numbers input without\ndecimals being interpreted as sympy integers. Numbers input without a\ndecimal may be interpreted as floating point if they are part of an\nexpression that undergoes python evaluation (e.g. 2/3 -> 0.6666...). It\nalso sets the flag algwsym_config.numerics.integers_as_exact = False.\nCall set_integers_as_exact() to avoid this conversion of rational\nfractions and related expressions to floating point. Algebra_with_sympy\nstarts with set_integers_as_exact() enabled (\nalgwsym_config.numerics.integers_as_exact = True).

    \n", "signature": "():", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eqn", "kind": "variable", "doc": "

    \n", "default_value": "<class 'sympy.core.equation.Equation'>"}, "algebra_with_sympy.algebraic_equation.units": {"fullname": "algebra_with_sympy.algebraic_equation.units", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "units", "kind": "function", "doc": "

    This operation declares the symbols to be positive values, so that sympy\nwill handle them properly when simplifying expressions containing units.\nUnits defined this way are just unit symbols. If you want units that are\naware of conversions see sympy.physics.units.

    \n\n
    Parameters
    \n\n
      \n
    • string names: a string containing a space separated list of\nsymbols to be treated as units.
    • \n
    \n\n
    Returns
    \n\n
    \n

    calls name = symbols(name,\npositive=True) in the interactive namespace for each symbol name.

    \n
    \n", "signature": "(names):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solve": {"fullname": "algebra_with_sympy.algebraic_equation.solve", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solve", "kind": "function", "doc": "

    Override of sympy solve().

    \n\n

    If passed an expression and variable(s) to solve for it behaves\nalmost the same as normal solve with dict = True, except that solutions\nare wrapped in a FiniteSet() to guarantee that the output will be pretty\nprinted in Jupyter like environments.

    \n\n

    If passed an equation or equations it returns solutions as a\nFiniteSet() of solutions, where each solution is represented by an\nequation or set of equations.

    \n\n

    To get a Python list of solutions (pre-0.11.0 behavior) rather than a\nFiniteSet issue the command algwsym_config.output.solve_to_list = True.\nThis also prevents pretty-printing in IPython and Jupyter.

    \n\n

    Examples

    \n\n
    \n
    >>> a, b, c, x, y = symbols('a b c x y', real = True)\n>>> import sys\n>>> sys.displayhook = __command_line_printing__ # set by default on normal initialization.\n>>> eq1 = Eqn(abs(2*x+y),3)\n>>> eq2 = Eqn(abs(x + 2*y),3)\n>>> B = solve((eq1,eq2))\n
    \n
    \n\n

    Default human readable output on command line

    \n\n
    \n
    >>> B\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
    \n
    \n\n

    To get raw output turn off by setting

    \n\n
    \n
    >>> algwsym_config.output.human_text=False\n>>> B\nFiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n
    \n
    \n\n

    Pre-0.11.0 behavior where a python list of solutions is returned

    \n\n
    \n
    >>> algwsym_config.output.solve_to_list = True\n>>> solve((eq1,eq2))\n[[Equation(x, -3), Equation(y, 3)], [Equation(x, -1), Equation(y, -1)], [Equation(x, 1), Equation(y, 1)], [Equation(x, 3), Equation(y, -3)]]\n>>> algwsym_config.output.solve_to_list = False # reset to default\n
    \n
    \n\n

    algwsym_config.output.human_text = True with\nalgwsym_config.output.how_code=True shows both.\nIn Jupyter-like environments show_code=True yields the Raw output and\na typeset version. If show_code=False (the default) only the\ntypeset version is shown in Jupyter.

    \n\n
    \n
    >>> algwsym_config.output.show_code=True\n>>> algwsym_config.output.human_text=True\n>>> B\nCode version: FiniteSet(FiniteSet(Equation(x, -3), Equation(y, 3)), FiniteSet(Equation(x, -1), Equation(y, -1)), FiniteSet(Equation(x, 1), Equation(y, 1)), FiniteSet(Equation(x, 3), Equation(y, -3)))\n{{x = -3, y = 3}, {x = -1, y = -1}, {x = 1, y = 1}, {x = 3, y = -3}}\n
    \n
    \n", "signature": "(f, *symbols, **flags):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.solveset": {"fullname": "algebra_with_sympy.algebraic_equation.solveset", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "solveset", "kind": "function", "doc": "

    Very experimental override of sympy solveset, which we hope will replace\nsolve. Much is not working. It is not clear how to input a system of\nequations unless you directly select linsolve, etc...

    \n", "signature": "(f, symbols, domain=Complexes):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality": {"fullname": "algebra_with_sympy.algebraic_equation.Equality", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality", "kind": "class", "doc": "

    Extension of Equality class to include the ability to convert it to an\nEquation.

    \n", "bases": "sympy.core.relational.Equality"}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Equation", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Equation", "kind": "function", "doc": "

    Return: recasts the Equality as an Equation.

    \n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.to_Eqn", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.to_Eqn", "kind": "function", "doc": "

    Synonym for to_Equation.\nReturn: recasts the Equality as an Equation.

    \n", "signature": "(self):", "funcdef": "def"}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"fullname": "algebra_with_sympy.algebraic_equation.Equality.default_assumptions", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Equality.default_assumptions", "kind": "variable", "doc": "

    \n", "default_value": "{}"}, "algebra_with_sympy.algebraic_equation.Eq": {"fullname": "algebra_with_sympy.algebraic_equation.Eq", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "Eq", "kind": "variable", "doc": "

    \n", "default_value": "<class 'algebra_with_sympy.algebraic_equation.Equality'>"}, "algebra_with_sympy.algebraic_equation.abs": {"fullname": "algebra_with_sympy.algebraic_equation.abs", "modulename": "algebra_with_sympy.algebraic_equation", "qualname": "abs", "kind": "variable", "doc": "

    \n", "default_value": "Abs"}, "algebra_with_sympy.preparser": {"fullname": "algebra_with_sympy.preparser", "modulename": "algebra_with_sympy.preparser", "kind": "module", "doc": "

    \n"}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"fullname": "algebra_with_sympy.preparser.algebra_with_sympy_preparser", "modulename": "algebra_with_sympy.preparser", "qualname": "algebra_with_sympy_preparser", "kind": "function", "doc": "

    In IPython compatible environments (Jupyter, IPython, etc...) this supports\na special compact input method for equations.

    \n\n

    The syntax supported is equation_name =@ equation.lhs = equation.rhs,\nwhere equation_name is a valid Python name that can be used to refer to\nthe equation later. equation.lhs is the left-hand side of the equation\nand equation.rhs is the right-hand side of the equation. Each side of the\nequation must parse into a valid Sympy expression.

    \n\n

    Note: This does not support line continuation. Long equations should be\nbuilt by combining expressions using names short enough to do this on one\nline. The alternative is to use equation_name = Eqn(long ...\nexpressions ... with ... multiple ... lines).

    \n\n

    Note: If the equation_name is omitted the equation will be formed,\nbut it will not be assigned to a name that can be used to refer to it\nlater. You may be able to access it through one of the special IPython\nunderscore names. This is not recommended.

    \n\n

    THIS FUNCTION IS USED BY THE IPYTHON ENVIRONMENT TO PREPARSE THE INPUT\nBEFORE IT IS PASSED TO THE PYTHON INTERPRETER. IT IS NOT MEANT TO BE USED\nDIRECTLY BY A USER

    \n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"fullname": "algebra_with_sympy.preparser.toIntegerInSympyExpr", "modulename": "algebra_with_sympy.preparser", "qualname": "toIntegerInSympyExpr", "kind": "function", "doc": "

    This function takes a string of valid Python and wraps integers within Sympy expressions\nin sympy.Integer() to make them Sympy integers rather than Python Int(). The\nadvantage of this is that calculations with Integer() types can be exact. This function\nis careful not to wrap Int() types that are not part of Sympy expressions, making it\npossible for this functionality to exist with operations (e.g. array and numpy indexing)\nthat are not compatible with the Integer() type.

    \n", "signature": "(string):", "funcdef": "def"}, "algebra_with_sympy.preparser.integers_as_exact": {"fullname": "algebra_with_sympy.preparser.integers_as_exact", "modulename": "algebra_with_sympy.preparser", "qualname": "integers_as_exact", "kind": "function", "doc": "

    This preparser uses sympy.interactive.session.int_to_Integer to\nconvert numbers without decimal points into sympy integers so that math\non them will be exact rather than defaulting to floating point. This\nshould not be called directly by the user. It is plugged into the\nIPython preparsing sequence when the feature is requested. The default for\nAlgebra_with_sympy is to use this preparser. This can be turned on and\noff using the Algebra_with_sympy functions:

    \n\n
      \n
    • set_integers_as_exact()
    • \n
    • unset_integers_as_exact()\nNOTE: This option does not work in plain vanilla Python sessions. You\nmust be running in an IPython environment (Jupyter, Notebook, Colab,\netc...).
    • \n
    \n", "signature": "(lines):", "funcdef": "def"}, "algebra_with_sympy.version": {"fullname": "algebra_with_sympy.version", "modulename": "algebra_with_sympy.version", "kind": "module", "doc": "

    \n"}}, "docInfo": {"algebra_with_sympy": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3534}, "algebra_with_sympy.proper_sympy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 4002}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 530}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 23}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 65}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 50}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 15}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"qualname": 6, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 126}, "algebra_with_sympy.algebraic_equation.ip": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.formatter": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 133}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 102}, "algebra_with_sympy.algebraic_equation.Eqn": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.units": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 100}, "algebra_with_sympy.algebraic_equation.solve": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 834}, "algebra_with_sympy.algebraic_equation.solveset": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 38}, "algebra_with_sympy.algebraic_equation.Equality": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 17}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.Eq": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.algebraic_equation.abs": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 229}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 97}, "algebra_with_sympy.preparser.integers_as_exact": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "algebra_with_sympy.version": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 34, "save": true}, "index": {"qualname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}, "fullname": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.proper_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}, "algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}, "algebra_with_sympy.version": {"tf": 1}}, "df": 34}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 27, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 4}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 12}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 7}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.version": {"tf": 1}}, "df": 1}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 3, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.proper_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.ip": {"tf": 1}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}}, "df": 1}}}}, "x": {"2": {"7": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.abs": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.Eq": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.units": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 4.69041575982343}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 3.1622776601683795}}, "df": 14, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}}}}}}, "doc": {"root": {"0": {"0": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"0": {"6": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 7}, "1": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "1": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 5.830951894845301}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.47213595499958}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "2": {"0": {"2": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "/": {"3": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "/": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2}, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "3": {"9": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.69041575982343}}, "df": 4}, "4": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "5": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"6": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}, "9": {"3": {"3": {"4": {"3": {"2": {"5": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 31.448370387032774}, "algebra_with_sympy.proper_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 50.049975024968795}, "algebra_with_sympy.algebraic_equation.algwsym_config": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 11}, "algebra_with_sympy.algebraic_equation.algwsym_config.output": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.label": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 5.385164807134504}, "algebra_with_sympy.algebraic_equation.ip": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.formatter": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 5.744562646538029}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 20.149441679609886}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.default_assumptions": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Eq": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.abs": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 5.830951894845301}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 4.242640687119285}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 4.69041575982343}, "algebra_with_sympy.version": {"tf": 1.7320508075688772}}, "df": 34, "a": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "*": {"docs": {}, "df": 0, "e": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "docs": {"algebra_with_sympy": {"tf": 6.164414002968976}, "algebra_with_sympy.algebraic_equation": {"tf": 7.483314773547883}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 12, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 6}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "d": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 11, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 7}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}}, "df": 1}, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "e": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "q": {"1": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}, "2": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}, "4": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "5": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 8.366600265340756}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 5.0990195135927845}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.605551275463989}}, "df": 11, "s": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6}, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 7}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 5.656854249492381}, "algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 5}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 6.244997998398398}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 13, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 5, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 3, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "n": {"docs": {"algebra_with_sympy": {"tf": 7}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 13, "t": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 4}, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 3.605551275463989}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 5.196152422706632}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.1622776601683795}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.7320508075688772}}, "df": 11, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 7, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.4641016151377544}}, "df": 8, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}}, "df": 1}}, "f": {"docs": {"algebra_with_sympy": {"tf": 7.211102550927978}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}}, "df": 13, "f": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"algebra_with_sympy": {"tf": 4.58257569495584}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 6, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}, "f": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 12, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 7}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3.605551275463989}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 5.385164807134504}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 3}}, "df": 12}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 5.916079783099616}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 2}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.23606797749979}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 14}, "r": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 13}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}, "e": {"docs": {"algebra_with_sympy": {"tf": 10.198039027185569}, "algebra_with_sympy.algebraic_equation": {"tf": 4.242640687119285}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.7416573867739413}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2.23606797749979}}, "df": 18, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "m": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 8}, "algebra_with_sympy.algebraic_equation": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "o": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 6.708203932499369}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 3, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": null}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.8284271247461903}}, "df": 6}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.23606797749979}}, "df": 4}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "r": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 3.7416573867739413}, "algebra_with_sympy.algebraic_equation": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "\\": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 16.522711641858304}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 6.708203932499369}}, "df": 3}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.Equality.to_Eqn": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 3.3166247903554}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "/": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"0": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "*": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "p": {"1": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}, "2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.4641016151377544}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.605551275463989}}, "df": 1, "y": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "p": {"docs": {}, "df": 0, "i": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.47213595499958}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1, "r": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "#": {"2": {"1": {"3": {"3": {"3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1, "p": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}, "*": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 3}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 9, "s": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}}, "o": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}}, "df": 2}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 2}, "t": {"docs": {"algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 6}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2.449489742783178}}, "df": 3, "y": {"docs": {"algebra_with_sympy": {"tf": 4}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 8}, "e": {"docs": {"algebra_with_sympy": {"tf": 4.795831523312719}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.human_text": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.6457513110645907}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 2}}, "df": 15, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.latex_as_equations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 6}, "g": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "/": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "c": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}, "*": {"docs": {}, "df": 0, "x": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "u": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 3.1622776601683795}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}}, "df": 2}, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"algebra_with_sympy": {"tf": 2.449489742783178}, "algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2, "s": {"docs": {"algebra_with_sympy": {"tf": 3.3166247903554}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.units": {"tf": 2.23606797749979}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}, "d": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"algebra_with_sympy": {"tf": 3}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "r": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.23606797749979}}, "df": 1, "o": {"docs": {"algebra_with_sympy": {"tf": 2}}, "df": 1, "t": {"docs": {"algebra_with_sympy": {"tf": 4.123105625617661}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solveset": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 6, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {"algebra_with_sympy": {"tf": 3.4641016151377544}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy.algebraic_equation.solve": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 2.6457513110645907}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.__init__": {"tf": 1}}, "df": 2}}, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.unset_integers_as_exact": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1.7320508075688772}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 2}}}}}}}}, "*": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "v": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy": {"tf": 2}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}, "algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 2}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "3": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.integers_as_exact": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.numerics.integers_as_exact": {"tf": 1}}, "df": 3, "s": {"docs": {"algebra_with_sympy.algebraic_equation.units": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.preparser.algebra_with_sympy_preparser": {"tf": 1.4142135623730951}, "algebra_with_sympy.preparser.toIntegerInSympyExpr": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"algebra_with_sympy": {"tf": 4.898979485566356}, "algebra_with_sympy.algebraic_equation": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.__init__": {"tf": 2.23606797749979}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"algebra_with_sympy": {"tf": 1.4142135623730951}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.show_code": {"tf": 1}, "algebra_with_sympy.algebraic_equation.algwsym_config.output.solve_to_list": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"algebra_with_sympy.algebraic_equation.solveset": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "*": {"docs": {}, "df": 0, "p": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2}}, "df": 1}}}, "k": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 2.449489742783178}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"algebra_with_sympy": {"tf": 2.8284271247461903}, "algebra_with_sympy.algebraic_equation": {"tf": 6.4031242374328485}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.solve": {"tf": 4.898979485566356}}, "df": 4, "*": {"0": {"docs": {"algebra_with_sympy": {"tf": 1.7320508075688772}, "algebra_with_sympy.algebraic_equation.set_integers_as_exact": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "*": {"2": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 3.1622776601683795}}, "df": 1}, "3": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "^": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "docs": {}, "df": 0}}, "q": {"docs": {"algebra_with_sympy": {"tf": 1}, "algebra_with_sympy.algebraic_equation": {"tf": 4.47213595499958}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"algebra_with_sympy": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"algebra_with_sympy.algebraic_equation": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/version.py b/version.py index f5fc7cf..6df8ed0 100644 --- a/version.py +++ b/version.py @@ -1 +1 @@ -__version__ = '1.1.0rc1' \ No newline at end of file +__version__ = '1.1.0' \ No newline at end of file