Skip to content

gusmaogabriels/mkin4py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mkin4py

mkin(microkinetics) 4 py(thon)

Copyright © 2015 - Gabriel Sabença Gusmão

linkedin

researchgate

license pypi version

A general package for linearly defining and solving microkinetic catalytic systems.


Description

A microkinetic package translated from Linearized Microkinetic Catalytic System Solver

By the author:

Gabriel S. Gusmão [email protected] under Dr. Phillip Christopher [email protected] advisement.

For detailed information, refer to code comments or associated publication. Gusmão, G. S. & Christopher, P., A general and robust approach for defining and solving microkinetic catalytic systems. AIChE J. 00, (2014).; http://dx.doi.org/10.1002/aic.14627

The 17-Step Ethylene Epoxidation by Stegelmann et al. has been used as example. Stegelmann, C., Schiødt, N. C., Campbell, C. T. & Stoltze, P. Microkinetic modeling of ethylene oxidation over silver. J. Catal. 221, 630–649 (2004).

  1. Set-up the environment conditions (temperature, pressure, gas constant)
  2. Create a MK (microkinetic model object)
    • Define its dimensions: number of reactants (rows) and elementary reactions (columns) involved in the stoichiometry matrix, and parse the rows that refer to free-species (non-adsorbed)
    • Parse the stoichiometry matrix (must be of size number of reactants × number of elementary reactions)
    • Set the kinetic parameters: Activation Energies and Pre-exponential factors (must be of the size of the involved elementary reactions)
    • Set the fixed concentration of free-species (molar fraction in non-adsorbed phase)
    • Parse the string-labels of involved species (array of size of number of species)
  3. Solve the decurrent ensuing LP (linear problem)
    • For now, there is only available a Newton-type method.
    • Standard iterative-procedure adopted for solving the inner-loop LP (Quasi-minimum residue)

The convergence parameters are set as default in the module solver in .params


Features

Linearization

The project makes use of explicit routines for the calculation of the MK model derivatives

- *Jacobian*: Available as standard.
- *Hessian*: Used in the convex two-step method (details in the aforementioned reference)

On the way

  1. Additional LP solvers in "switchable" fashion.
  2. Evolutionary methods for the definition of best convergence parameters for stiff problems (when TOF`s are close to the machine precision)

Instructions

  • Installation

    pip install --upgrade https://github.com/gusmaogabriels/mkin4py/zipball/master
    
  • Example: Stoltze's 17-Step Ethylene Epoxidation MK system

    import mkin4py
    import numpy as np
    
    # Environment Conditions
    T = 500; #K
    P = 1; #bar
    gas_constant = 8.31456e-3 # Gas Constant - kJ/(mol×K)
    
    # Set the environment conditions
    mkin4py.environment.set_temperature(T)
    mkin4py.environment.set_gas_constant(gas_constant)
    mkin4py.environment. set_pressure(P)
    
    # Stoichiometric Matrix
    ms = [
    [-1, 1, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1],\
    [-1, 1,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1,-1, 1, 1,-1, 0, 0, 1,-1, 0, 0, 1,-1, 1,-1],\
    [ 1,-1,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 2,-2,-2, 2,-1, 1, 1,-1,-1, 1, 0, 0, 0, 0, 1,-1,-6, 6, 0, 0,-1, 1,-1, 1,-5, 5, 1,-1, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4, 0, 0, 0, 0, 1,-1, 3,-3,-2, 2, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0,-1, 1],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0,-1, 1, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 2,-2, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 1,-1,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0,-1, 1,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1,-1, 1, 0, 0, 0, 0, 0, 0, 0, 0],\
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1,-1, 1, 0, 0, 0, 0, 0, 0],\
    ];
    
    nreac = [0, 1] # Reactant Rows in mS
    nprod = [2, 3, 4, 5] # Product Rows in mS
    stoichs = np.concatenate((nreac,nprod)) # Reactants and Products are not under PSSA
    mkin4py.mkmodel.create(np.shape(ms)[0],np.shape(ms)[1],stoichs) # Initialize the model
    mkin4py.mkmodel.set_ms(ms) # Set the stoichiometry matrix
    
    # Species labels 
    splabels = ['O2','C2H4','C2H4O','CH3CHO','CO2','H2O','*','O2*','O*','OH*',\
    'H2O*','CO2*','C2H4*','O∙O*','C2H4∙O*','CH2CH2O∙O*','C2H4O∙O*','CH3CHO∙O*',\
    'CH2CHOH∙O*','CH2CHO∙O*']
    
    mkin4py.mkmodel.set_splabels(splabels) # Set species labels
    
    # Pre-exponential Factors of Eelementary Reactions (1/s)
    va =[2.71e5, 1.1e12, 4.0e12, 8.0e14, 2.0e7, 1.3e15, 7.2e7,\
    2.2e11, 9.0e14, 5.3e14, 1.95e8, 4.8e12, 1.13e13, 2.11e12,\
    9.0e12, 4.5e10, 2.9e13, 2.6e9, 2.0e20, 5.3e13, 7.2e7, 2.2e11,\
    4.0e11, 3.1e14, 2.6e13, 1.3e9, 1.0e20, 5.5e13, 1.4e10, 1.0e11,\
    3.6e14, 1.0e8, 5.9e14, 1.4e9]
    
    # Activation Barriers for Elementary ReactionS (kJ/mol)
    vea = [5.7000, 47.3000, 75.0000, 157.5000, 20.0000, 96.9000, 0, 37.1000, 112.0000,\
    183.3000, 0, 39.1000, 95.0000, 93.5000, 95.0000, 204.3000, 41.9000, 4.4000,\
    11.0000, 791.6000, 0, 30.1000, 32.0000, 42.8000, 86.0000, 106.1000, 0, 906.6000,\
    65.6000, 50.0000, 38.9000, 0, 46.6000, 0]
    
    # Set the kinetic parameters
    mkin4py.mkmodel.set_kinetic_params(np.array(va,ndmin=2).T,np.array(vea,ndmin=2).T)
    
    y = [0.5, 0.5, 0, 0, 0, 0] # Reactants and Products Initial Fraction
    mkin4py.mkmodel.set_concentrations(y) # Set the *free*-species concentrations
    
  • Evaluation:

    sol = mkin4py.solver.solve.rk4() # 4th-order Runge-Kutta method coupled within the LP solved via QMR
    # Outupts
    print ('...')
    print (sol['msg'], 'time: ', sol['time'])
    print ('Coverage')
    print (sol['coverage'])
    print ('Rates')
    print (sol['rates'])
    
  • Output:

    ...
    Convergence achieved time:  2.25999999046
    Coverage
    [[  5.00000000e-01]
    [  5.00000000e-01]
    [  0.00000000e+00]
    [  0.00000000e+00]
    [  0.00000000e+00]
    [  0.00000000e+00]
    [  4.39342950e-01]
    [  1.19743307e-03]
    [  1.07992516e-01]
    [  1.10447591e-01]
    [  2.99730332e-09]
    [  7.70711567e-10]
    [  1.00256049e-01]
    [  9.78269843e-02]
    [  1.32727193e-01]
    [  9.64368428e-03]
    [  3.28419897e-08]
    [  4.59118359e-13]
    [  5.65562897e-04]
    [  1.12150752e-15]]
    Rates
    [[ -4.24252190e+01]
    [ -2.49532633e+01]
    [  1.29732696e+01]
    [  5.58723011e-04]
    [  2.39588699e+01]
    [  2.39588699e+01]
    [  0.00000000e+00]
    [  3.65929509e-13]
    [  0.00000000e+00]
    [  4.32857086e-11]
    [  2.76796815e-16]
    [  2.87485591e-11]
    [  0.00000000e+00]
    [ -2.27373675e-13]
    [ -4.65661287e-10]
    [  9.86479981e-16]
    [  0.00000000e+00]
    [ -1.60491195e-13]
    [  4.65661287e-10]
    [ -1.42115222e-11]]