-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimSettings.m
231 lines (194 loc) · 8.54 KB
/
simSettings.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
% Simulation settings
%
% Contains the most relevant simulation parameters. Loaded each time
% simulation is run.
%
% Copyright (c) 2014, Mate Boban
%% Names of link types (supported: V2V and V2I)
V2XNames = {'V2I'};
%% Scenario: Avenida Paulista
% [vehicleID|Latitude|Longitude] - provided by SUMO.
vehiclesFile = 'inputMobilitySUMO/avenidaPaulista25sec.xml';
% Provided by OpenStreetMap
staticFile = 'inputPolygon/avenidaPaulista.osm';
% [minlon,minlat,maxlon,maxlat] or [-Inf,-Inf,Inf,Inf];
bBoxVehicles = [-46.6595500,-23.5664000,-46.6486500,-23.5606600];
% [RSU_ID|Latitude|Longitude|Height(m)|TxPower(dBm)] or empty string
RSUFile = 'inputRSU/avenidaPaulistaRSUs.txt';
%%
% Load the file containing outlines of foliage. If foliage is contained in
% staticFile above, use 'inputPolygon/emptyStaticFile' as foliageFile.
foliageFile = 'inputPolygon/emptyStaticFile';
% Number of rows per vehicle outline (by default, there are 5 sides per
% vehicle outline defined by 5 points, with the first point repeating to
% close the polygon (i.e., 6 rows in total).
numRowsPerVehicle = 6;
% Tolerance (in meters) for simplifying building outlines. Useful if
% building outlines are overly complex. For more info, see:
% http://www.mathworks.com/matlabcentral/fileexchange/21132-line-simplification
toleranceBuildings = 0;
%{
% Which model is used for NLOSv links (models contained in LOSNLOSv.m):
% 1: Simple model: add attenuation based on the number of obstructing
% vehicles, irrespective of their dimensions. NB: requires addNLOSvLoss
% variable to be set up.
% 2: Bullington method for knife-edge diffraction ("Radio propagation for
% vehicular communications", K. Bullington, IEEE Transactions on
% Vehicular Technology, Vol. 26, Issue 4): Top and side diffraction are
% accounted for.
% 3: Multiple knife-edge based on ITU-R method (Propagation by
% diffraction, Recommendation P.526, Feb. 2007, available at
% http://www.itu.int/rec/R-REC-P.526-13-201311-I/en). Top and side
% diffraction are accounted for.
%
% Details on how the NLOSv models are implemented are available in: "Impact
% of vehicles as obstacles in vehicular ad hoc networks", Boban et al.,
% IEEE Journal on Selected Areas in Communications, Vol. 29, Issue 1.
%}
NLOSvModelType = 3;
% Additional loss (in dB) due to obstructing vehicles (min, med, max).
% Applies for NLOSvModelType = 1 only (for details, see LOSNLOSv.m).
addNLOSvLoss = [2 6 10];
%% Parameters related to communicating vehicle pairs
% Array containing communicating vehicle pairs. NB1: vehicles
% in pairs are fetched based on the row ID (e.g., if [4,10] is a pair, 4th
% and 10th vehicle in the vehicle list are selected. NB2: if same pairs are
% used for all time-steps, then perform "repmat" on the array.
commPairArray = 'inputPolygon/emptyCommPairFile';
commPairArrayV2I = 'inputPolygon/emptyCommPairFile';
% In case commPairArray is empty, numCommPairs defines how many
% communication pairs are generated. If this number is larger than the
% total number of pairs in the system, then it is replaced by the latter.
% Conversely, if you want to analyze all possible communication pairs,
% simply set numCommPairs to Inf;
numCommPairs = 50;
numCommPairsV2I = Inf;
%% Dimensions of vehicles (in meters)
% Mean and standard deviation for normally distributed dimensions
carMeanHeight = 1.5;
carStdDev =.1;
truckMeanHeight = 3;
truckStdDev = .1;
carMeanWidth = 1.75;
carStdDevWidth = .1;
truckMeanWidth = 2;
truckStdDevWidth = .1;
carMeanLength = 5;
carStdDevLength = .4;
truckMeanLength = 9;
truckStdDevLength = .6;
% Putting vehicle dimensions in an array for more compact argument passing
vehDimensionParams = ...
[carMeanHeight carStdDev truckMeanHeight truckStdDev;...
carMeanWidth carStdDevWidth truckMeanWidth truckStdDevWidth;...
carMeanLength carStdDevLength truckMeanLength truckStdDevLength];
% For vehicles not generated by the simulation environment, any vehicle
% with length larger than lengthThreshold (in meters) is assumed to be a
% tall vehicle (e.g., a truck)
lengthThreshold = 8;
%% Max. communication range for LOS, NLOSv, and NLOSb (commRange = LOSRange)
commRange = 500;
maxNLOSvRange = 400;
maxNLOSbRange = 300;
%% Propagation-related parameters
% Antenna height (in meters, added atop vehicle height);
antennaHeight = .1;
% Antenna polarization: 0 - vertical; 1 - horizontal
polarization = 0;
% Operating frequency (in Hz)
freq = 5.89*10^9;
% Transmit power (in dBm) for vehicles. RSU input file contains Tx power
% for each of the RSUs. NB: if you want to use different Tx power per
% vehicle, RSU input file can serve as a starting point
txPower = 12;
% Vehicle and RSU antenna gains (in dBi)
antennaGain.veh = 1;
antennaGain.RSU = 1;
% Path Loss Exponent (PLE) for NLOSb/f links
PLENLOSb.V2V.NLOSb = 2.9;
PLENLOSb.V2V.NLOSf = 2.7;
PLENLOSb.V2I.NLOSb = 2.9;
PLENLOSb.V2I.NLOSf = 2.7;
%% Small-scale signal variation parameters
% (taken from the measurements described in the paper "Geometry-Based
% Vehicle-to-Vehicle Channel Modeling for Large-Scale Simulation". Details
% on the use of parameters below are described in the same paper). Other
% environments can have different min and max small scale fading.
%% V2V
% Minimum std. dev. of small scale variation for LOS and NLOSv/b links
smallScale.V2V.minFadingLOS = 3.3;
smallScale.V2V.minFadingNLOSv = 3.8;
smallScale.V2V.minFadingNLOSb = 4.1;
smallScale.V2V.minFadingNLOSf = smallScale.V2V.minFadingNLOSb;
% Maximum std. dev. of small scale variation for LOS and NLOSv/b links
smallScale.V2V.maxFadingLOS = 5.2;
smallScale.V2V.maxFadingNLOSv = 5.3;
smallScale.V2V.maxFadingNLOSb = 6.8;
smallScale.V2V.maxFadingNLOSf = smallScale.V2V.maxFadingNLOSb;
%% V2I; calculated based on Bologna V2I measurements by Gozalvez et al.:
% http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6194400
% Minimum std. dev. of small scale variation for LOS and NLOSv/f/b links
smallScale.V2I.minFadingLOS = 1;
smallScale.V2I.minFadingNLOSv = 1;
smallScale.V2I.minFadingNLOSf = 1.5;
smallScale.V2I.minFadingNLOSb = 1.9;
% Maximum std. dev. of small scale variation for LOS and NLOSv/f/b links;
smallScale.V2I.maxFadingLOS = 3.4;
smallScale.V2I.maxFadingNLOSv = 4.2;
smallScale.V2I.maxFadingNLOSf = 3.3;
smallScale.V2I.maxFadingNLOSb = 4.7;
% Minimum radius (in meters) based on which the small scale signal
% variation model determines maximum vehicle density. The specific value is
% a guesstimate.
minDensityRange = 250;
%% Experiment-related parameters
% Determines if the simulation should perform comparison against
% measurement data (experiments = 1) or not (experiments = 0).
% NB: measurement data needs to be separated into LOS, NLOSv, and NLOSb.
experiments = 0;
%% Experiment type: 0-V2V; 1-V2I
experimentType = 1;
if experimentType~=0 && experimentType~=1
error('Wrong experiment type');
end
% Location of the measurement trace (NB: it should be used with appropriate
% vehicle and building/foliage outlines)
%experimentFile = 'inputExperiments/cc_high_ceed_sum_noHeader.txt';
%experimentFile = 'inputExperiments/bolognsRSU3-3-P20-h6.5_MB';
experimentFile = 'inputExperiments/bolognaRSU9-P20-h6.5.txt';
% Actual height (in meters) of the transmitting (Tx) and receiving (Rx)
% vehicle used in the experiments in Porto (located in
% inputExperiments/measurementsPorto). -Inf in the third column is used for
% distinguishing the real-world TxRxHeight in the simulation
TxRxHeight = [6.5, 1.5 -Inf];
%% Reflection- and diffraction-related parameters
% Determines if reflections and diffractions are used (useReflDiffr=1) or
% not (useReflDiffr=0) If not, only log-distance path loss is used for
% NLOSb links.
useReflDiffr=0;
% If reflections are used
if useReflDiffr
% Minimum fading for NLOSb data is set to 0 in case reflections and
% diffractions are used. Detailed explanation is available in the paper
minFadingNLOSb = 0;
end
% Relative permittivity of materials
% (http://en.wikipedia.org/wiki/Relative_permittivity).
% Buildings (concrete)
buildingReflRelPerm = 4.5;
% Vehicles (rough approximation: mix of metal, glass, rubber)
vehReflRelPerm = 6;
%% Google Earth Visualization
% NB: in case of large networks, generating the visualization can take very
% long time. Use accordingly.
GEVisualize = 1;
% IF GEVisualize = 1, then parameters below indicate what is plotted.
% Plot static objects and vehicle polygons
plotPoly = 0;
% Plot the received power for each of the communications pairs
plotRxPwr = 1;
% Plot the number of neighbors per vehicle
plotNeighbors = 1;
%% Output-related parameters
% Verbose textual output in console (verbose = 1)
verbose = 0;