-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecode_head_data.py
833 lines (542 loc) · 24.2 KB
/
decode_head_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
# coding: utf-8
# # Examples of all decoders (except Kalman Filter)
#
# In this example notebook, we:
# 1. Import the necessary packages
# 2. Load a data file (spike trains and outputs we are predicting)
# 3. Preprocess the data for use in all decoders
# 4. Run all decoders and print the goodness of fit
# 5. Plot example decoded outputs
#
# See "Examples_kf_decoder" for a Kalman filter example. <br>
# Because the Kalman filter utilizes different preprocessing, we don't include an example here. to keep this notebook more understandable
# ## 1. Import Packages
#
# Below, we import both standard packages, and functions from the accompanying .py files
# In[2]:
#Import standard packages
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import sys,os
from scipy import io
from scipy import stats,signal
import pickle
import h5py
#Import function to get the covariate matrix that includes spike history from previous bins
from preprocessing_funcs import get_spikes_with_history
#Import metrics
from metrics import get_R2
from metrics import get_rho
#Import decoder functions
from decoders import WienerCascadeDecoder
from decoders import WienerFilterDecoder
from decoders import DenseNNDecoder
from decoders import SimpleRNNDecoder
from decoders import GRUDecoder
from decoders import LSTMDecoder
#from decoders import XGBoostDecoder
from decoders import SVRDecoder
import h5py
from sklearn.externals import joblib
from sklearn.preprocessing import StandardScaler
from sklearn import linear_model
from sklearn.decomposition import PCA
import seaborn as sns
sns.set_style('white')
from scipy import stats,signal
#from transforms3d import euler
def filter(ephys,freq_range,filt_order = 4,filt_type='bandpass',fs=10.):
# design Elliptic filter:
[b,a] = signal.butter(filt_order,[freq/fs for freq in freq_range],btype=filt_type)
filtered_trace = signal.filtfilt(b,a,ephys,axis=0)
return filtered_trace
# def get_mean_lfp(neural_data):
# ## get the 384 matrix down to 64 by averaging LFP power by band within each tetrode:
# x = np.arange(384)
# within_tet_band_starts = []
# for i in range(6):
# within_tet_band_starts.append(x[i:24:6])
# within_tet_band_starts = np.asarray(within_tet_band_starts)
# tet_starts = x[0::24]
# for tet in range(16):
# for band in range(6):
# #print x[within_tet_band_starts[band] + tet_starts[tet]]
# neural_data =
def load_data(head_file,neural_data_file):
head_data = h5py.File(head_file,'r')
#jerk_power = head_data['jerk_power'][:]
dx = head_data['dx'][:]
dy = head_data['dy'][:]
dz = head_data['dz'][:]
oz = head_data['oz'][:]
oy = head_data['oy'][:]
ox = head_data['ox'][:]
ay = head_data['ay'][:]
ax = head_data['ax'][:]
az = head_data['az'][:]
xyz = np.sqrt(ax**2 + ay**2 + az**2)
# theta = np.rad2deg(np.arctan(ax/ay))
# dx_neg = np.empty(dx.shape)
# dx_pos = np.empty(dx.shape)
# dx_neg[np.where(dx < 0)[0]] = dx[np.where(dx < 0)[0]]
# dx_pos[np.where(dx > 0)[0]] = dx[np.where(dx > 0)[0]]
# left = dx_neg**2
# right = dx_pos**2
head_data.close()
#xy_acc = head_data['xy_acc']
#theta = head_data['theta']
#time = head_data['time']
#y = np.vstack([xyz,oz,dx,dy,dz,ax,ay,az,ox,oy]).T
#y_name = ['xyz','oz','dx','dy','dz','ax','ay','az','ox','oy']
y = np.vstack([xyz]).T
y_name = ['xyz']
#y = np.unwrap(np.unwrap(np.deg2rad(y)))
#y = np.vstack([ox,oy,dx,dy,ax,ay,az]).T
#y_name = ['ox','oy','dx','dy','ax','ay','az']
neural_data_file = h5py.File(neural_data_file,'r')
### determine if it's spikes or LFPs:
print(neural_data_file.keys())
if neural_data_file.keys()[0].find('spikes') == 1:
print('Loading Spikes')
neural_data = neural_data_file['sorted_spikes'][:]
elif neural_data_file.keys()[0].find('lfp_power') == 1:
print('Loading LFPs')
neural_data = neural_data_file['lfp_power'][:]
else:
print('Loading something?')
key = neural_data_file.keys()[0]
neural_data = neural_data_file[key][:]
neural_data_file.close()
### make sure neural data is in right shape (samples x channels):
if neural_data.shape[0] < neural_data.shape[1]:
neural_data = neural_data.T
## limit the size of the neural data?
#q = []
#for i in range(1000000):
# q.append(euler.euler2quat(np.deg2rad(ox[i]),np.deg2rad(oz[i]),np.deg2rad(oy[i]))) ### yaw,pitch,roll
#y = np.asarray(q) #np.vstack([q]).T
#y_name = ['quaternion1','quaternion2','quaternion3','quaternion4']
#dx = np.gradient(filter(signal.medfilt(np.unwrap(np.deg2rad(ox)),[21]),[1],filt_type='lowpass',fs=100.))
#dy = np.gradient(filter(signal.medfilt(oy,[21]),[1],filt_type='lowpass',fs=100.))
#dz = np.gradient(filter(signal.medfilt(oz,[21]),[1],filt_type='lowpass',fs=100.))
#y = np.vstack([left,right]).T
#y_name = ['left','right']
# y = np.vstack([jerk_power]).T
# y_name = ['jerk_power']
cuttoff = int(1e6)
if neural_data.shape[0] > cuttoff:
print('Truncating data to %d points' % cuttoff)
neural_data = neural_data[0:cuttoff,:]
y = y[0:cuttoff,:]
#spikes_file = h5py.File('all_sorted_spikes.hdf5','r')
#spikes = spikes_file['sorted_spikes'][:]
#spikes_file.close()
print('Shape of head data = ', y.shape)
print('Shape of neural_data = ', neural_data.shape)
# for i in range(len(y_name)):
# # y[:,i] = signal.medfilt(y[:,i],[21])
# y[:,i] = filter(y[:,i],[1.],filt_type='lowpass',fs=100.)
#idx = 1000 #int(y.shape[0]/2)
#print 'max idx = ', idx
#return y[0:idx,:], neural_data[0:idx,:],y_name
return y, neural_data,y_name
def sample_dx_uniformly(derivative,num_points=10000):
################### sample the dx distribution evenly: ####################
derivative = np.squeeze(derivative)
bins = 10000
hist,edges = np.histogram(derivative,bins=bins,normed=True)
bins_where_values_from = np.searchsorted(edges,derivative)
bin_weights = 1/(hist/sum(hist))
inv_weights = bin_weights[bins_where_values_from-1]
dx_idx = np.arange(0,len(derivative),1)
sampled_dx_idx = np.random.choice(dx_idx,size=num_points,replace=False,p =inv_weights/sum(inv_weights) )
sampled_dx = np.random.choice(derivative,size=num_points,replace=False,p =inv_weights/sum(inv_weights) )
f,axarr = plt.subplots(2,dpi=600,sharex=True)
axarr[0].hist(derivative,bins=200)
axarr[0].set_ylabel('d_yaw \n original')
axarr[1].hist(sampled_dx,bins=200)
axarr[1].set_ylabel('d_yaw \n resampled')
sns.despine(left=True,bottom=True)
f.savefig('resampled_original_histograms.pdf')
return sampled_dx_idx
def preprocess(jerk,neural_data):
# ## 3. Preprocess Data
# ### 3A. User Inputs
# The user can define what time period to use spikes from (with respect to the output).
# In[25]:
bins_before=10 #How many bins of neural data prior to the output are used for decoding
bins_current=1 #Whether to use concurrent time bin of neural data
bins_after=10 #How many bins of neural data after the output are used for decoding
# ### 3B. Format Covariates
# #### Format Input Covariates
# In[26]:
# Format for recurrent neural networks (SimpleRNN, GRU, LSTM)
# Function to get the covariate matrix that includes spike history from previous bins
X=get_spikes_with_history(neural_data,bins_before,bins_after,bins_current)
# Format for Wiener Filter, Wiener Cascade, XGBoost, and Dense Neural Network
#Put in "flat" format, so each "neuron / time" is a single feature
X_flat=X.reshape(X.shape[0],(X.shape[1]*X.shape[2]))
# #### Format Output Covariates
# In[79]:
#Set decoding output
#y=jerk_power
y=jerk
# for i in [0]: # range(y.shape[1])
# resamp_idx = sample_dx_uniformly(y[:,i],num_points=10000)
# resamp_idx = np.sort(resamp_idx)
# y = y[resamp_idx,:]
# X_flat = X_flat[resamp_idx,:]
# print '###################### getting non-zero values ######################'
# non_zeros = np.where(abs(y) >= 0.5 )[0]
# print y.shape
# y = y[non_zeros,:]
# print y.shape
# print X_flat.shape
# X_flat = X_flat[non_zeros,:]
# ### 3C. Split into training / testing / validation sets
# Note that hyperparameters should be determined using a separate validation set.
# Then, the goodness of fit should be be tested on a testing set (separate from the training and validation sets).
# #### User Options
# In[32]:
#Set what part of data should be part of the training/testing/validation sets
training_range=[0, 0.5]
testing_range=[0.7, 0.85]
valid_range=[0.5, 1]
# #### Split Data
# In[81]:
num_examples=X_flat.shape[0]
#Note that each range has a buffer of"bins_before" bins at the beginning, and "bins_after" bins at the end
#This makes it so that the different sets don't include overlapping neural data
training_set=np.arange(np.int(np.round(training_range[0]*num_examples))+bins_before,np.int(np.round(training_range[1]*num_examples))-bins_after)
testing_set=np.arange(np.int(np.round(testing_range[0]*num_examples))+bins_before,np.int(np.round(testing_range[1]*num_examples))-bins_after)
valid_set=np.arange(np.int(np.round(valid_range[0]*num_examples))+bins_before,np.int(np.round(valid_range[1]*num_examples))-bins_after)
#Get training data
X_train=X[training_set,:,:]
X_flat_train=X_flat[training_set,:]
y_train=y[training_set,:]
#Get testing data
X_test=X[testing_set,:,:]
X_flat_test=X_flat[testing_set,:]
y_test=y[testing_set,:]
#Get validation data
X_valid=X[valid_set,:,:]
X_flat_valid=X_flat[valid_set,:]
y_valid=y[valid_set,:]
# ### 3D. Process Covariates
# We normalize (z_score) the inputs and zero-center the outputs.
# Parameters for z-scoring (mean/std.) should be determined on the training set only, and then these z-scoring parameters are also used on the testing and validation sets.
# In[ ]:
# In[82]:
#Z-score "X" inputs.
# X_train_mean=np.nanmean(X_train,axis=0)
# X_train_std=np.nanstd(X_train,axis=0)
# X_train=(X_train-X_train_mean)/X_train_std
# X_test=(X_test-X_train_mean)/X_train_std
# X_valid=(X_valid-X_train_mean)/X_train_std
#Z-score "X_flat" inputs.
X_flat_train_mean=np.nanmean(X_flat_train,axis=0)
X_flat_train_std=np.nanstd(X_flat_train,axis=0)
X_flat_train=(X_flat_train-X_flat_train_mean)/X_flat_train_std
X_flat_test=(X_flat_test-X_flat_train_mean)/X_flat_train_std
X_flat_valid=(X_flat_valid-X_flat_train_mean)/X_flat_train_std
#Z-score outputs
y_train_mean=np.nanmean(y_train,axis=0)
y_train_std=np.nanstd(y_train,axis=0)
####
y_train=(y_train-y_train_mean) #/y_train_std
y_test=(y_test-y_train_mean) #/y_train_std
y_valid=(y_valid-y_train_mean) #/y_train_std
return X_flat_train,X_flat_valid,X_train,X_valid,y_train,y_valid,y_train_mean,y_train_std
# ## 4. Run Decoders
def BayesianRidge_model(X_train,X_valid,y_train,y_test,y_name, y_train_mean,y_train_std):
model_name = 'BayesianRidge'
print('head items to fit are: ', y_name)
# In[ ]:
for head_item in range(len(y_name)):
y_train_item = y_train[:,head_item]
#y_train_item = np.reshape(y_train_item,[y_train.shape[0],1])
y_test_item = y_test[:,head_item]
#y_test_item = np.reshape(y_test_item,[y_test_item.shape[0],1])
print('********************************** Fitting %s on %s Data **********************************' % (model_name,y_name[head_item]))
#Declare model
model = linear_model.BayesianRidge(compute_score=True)
#Fit model
model.fit(X_train,y_train_item)
#Get predictions
y_valid_predicted=model.predict(X_valid)
training_prediction=model.predict(X_train)
R2s_training=get_R2(y_train_item,training_prediction)
print('R2 on training set = ', R2s_training)
#Get metric of fit
R2s=get_R2(y_test_item,y_valid_predicted)
print('R2s:', R2s)
print('saving prediction ...')
np.savez(y_name[head_item] + '_%s_ypredicted.npz' % model_name,y_test=y_test_item,y_prediction=y_valid_predicted,
y_train_=y_train_item,training_prediction=training_prediction,
y_train_mean=y_train_mean[head_item],y_train_std=y_train_std[head_item])
#print 'saving model ...'
joblib.dump(model, y_name[head_item] + '_%s.pkl' % model_name)
print('plotting results...')
plot_results(y_test_item,y_valid_predicted,y_name[head_item],R2s,model_name=model_name)
return model
def ridgeCV_model(X_train,X_valid,y_train,y_test,y_name, y_train_mean,y_train_std):
print('head items to fit are: ', y_name)
# In[ ]:
for head_item in range(len(y_name)):
y_train_item = y_train[:,head_item]
y_train_item = np.reshape(y_train_item,[y_train.shape[0],1])
y_test_item = y_test[:,head_item]
y_test_item = np.reshape(y_test_item,[y_test_item.shape[0],1])
print('********************************** Fitting RidgeCV on %s Data **********************************' % y_name[head_item])
#Declare model
model = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0],normalize=True,fit_intercept=True)
#Fit model
model.fit(X_train,y_train_item)
#Get predictions
y_valid_predicted=model.predict(X_valid)
training_prediction=model.predict(X_train)
R2s_training=get_R2(y_train_item,training_prediction)
print('R2 on training set = ', R2s_training)
#Get metric of fit
R2s=get_R2(y_test_item,y_valid_predicted)
print('R2s:', R2s)
print('saving prediction ...')
np.savez(y_name[head_item] + '_RidgeCV_ypredicted.npz',y_test=y_test_item,y_prediction=y_valid_predicted,
y_train_=y_train_item,training_prediction=training_prediction,
y_train_mean=y_train_mean[head_item],y_train_std=y_train_std[head_item])
#print 'saving model ...'
joblib.dump(model, y_name[head_item] + '_Ridge.pkl')
print('plotting results...')
plot_results(y_test_item,y_valid_predicted,y_name[head_item],R2s,model_name='RidgeCV')
return model
def Wiener(X_flat_train,X_flat_valid,y_train,y_valid):
#Declare model
model_wf=WienerFilterDecoder()
#Fit model
model_wf.fit(X_flat_train,y_train)
#Get predictions
y_valid_predicted_wf=model_wf.predict(X_flat_valid)
#Get metric of fit
R2s_wf=get_R2(y_valid,y_valid_predicted_wf)
print('R2s:', R2s_wf)
#plot_results(y_valid,y_valid_predicted_wf)
return model_wf
def WienerCascade(X_train,X_valid,y_train,y_test,y_name, y_train_mean,y_train_std):
# ### 4B. Wiener Cascade (Linear Nonlinear Model)
#print 'head items to fit are: ', y_name
# In[ ]:
for head_item in range(len(y_name)):
y_train_item = y_train[:,head_item]
y_train_item = np.reshape(y_train_item,[y_train.shape[0],1])
y_test_item = y_test[:,head_item]
y_test_item = np.reshape(y_test_item,[y_test_item.shape[0],1])
#print '********************************** Fitting WienerCascade on %s Data **********************************' % y_name[head_item]
#Declare model
model = WienerCascadeDecoder(degree=3)
#Fit model
model.fit(X_train,y_train_item)
#Get predictions
y_valid_predicted=model.predict(X_valid)
training_prediction=model.predict(X_train)
R2s_training=get_R2(y_train_item,training_prediction)
print('R2 on training set = ', R2s_training)
#Get metric of fit
R2s=get_R2(y_test_item,y_valid_predicted)
print('R2s:', R2s)
#print 'saving prediction ...'
np.savez(y_name[head_item] + '_WienerCascade_ypredicted.npz',y_test=y_test_item,y_prediction=y_valid_predicted,
y_train_=y_train_item,training_prediction=training_prediction,
y_train_mean=y_train_mean[head_item],y_train_std=y_train_std[head_item])
#print 'saving model ...'
joblib.dump(model, y_name[head_item] + '_WienerCascade.pkl')
#print 'plotting results...'
plot_results(y_test_item,y_valid_predicted,y_name[head_item],R2s,model_name='WienerCascade')
return model
def XGBoost():
# ### 4C. XGBoost (Extreme Gradient Boosting)
# In[ ]:
#Declare model
model_xgb=XGBoostDecoder(max_depth=3,num_round=200,eta=0.3,gpu=-1)
#Fit model
model_xgb.fit(X_flat_train, y_train)
#Get predictions
y_valid_predicted_xgb=model_xgb.predict(X_flat_valid)
#Get metric of fit
R2s_xgb=get_R2(y_valid,y_valid_predicted_xgb)
print('R2s:', R2s_xgb)
def SVR(X_flat_train,X_flat_valid,y_train,y_valid,y_name):
# ### 4D. SVR (Support Vector Regression)
# In[40]:
#The SVR works much better when the y values are normalized, so we first z-score the y values
#They have previously been zero-centered, so we will just divide by the stdev (of the training set)
y_train_std=np.nanstd(y_train,axis=0)
y_zscore_train=y_train/y_train_std
#y_zscore_test=y_test/y_train_std
y_zscore_valid=y_valid/y_train_std
#Declare model
model_svr=SVRDecoder(C=.1, max_iter=10000,gamma=1e-5)
#Fit model
for head_item in range(len(y_name)):
### fit one at a time and save/plot the results
#print '########### Fitting SVR on %s data ###########' % y_name[head_item]
y_zscore_train_item = y_zscore_train[:,head_item]
y_zscore_train_item = np.reshape(y_zscore_train_item,[y_zscore_train.shape[0],1])
#print 'shape of y_zscore_train_item = ', y_zscore_train_item.shape
y_zscore_valid_item = y_zscore_valid[:,head_item]
y_zscore_valid_item = np.reshape(y_zscore_valid_item,[y_zscore_valid_item.shape[0],1])
model_svr.fit(X_flat_train,y_zscore_train_item)
#Get predictions
y_zscore_valid_predicted_svr=model_svr.predict(X_flat_valid)
#Get metric of fit
R2s_svr=get_R2(y_zscore_valid_item,y_zscore_valid_predicted_svr)
print(y_name[head_item], 'R2:', R2s_svr)
np.savez(y_name[head_item] + '_svr_ypredicted.npz',y_zscore_valid=y_zscore_valid_item,y_zscore_valid_predicted_svr=y_zscore_valid_predicted_svr)
plot_results(y_zscore_valid_item,y_zscore_valid_predicted_svr,y_name[head_item],R2s_svr)
def DNN(X_train,X_valid,y_train,y_test,y_name):
# ### 4E. Dense Neural Network
print('head items to fit are: ', y_name)
# In[ ]:
for head_item in range(len(y_name)):
y_train_item = y_train[:,head_item]
y_train_item = np.reshape(y_train_item,[y_train.shape[0],1])
y_test_item = y_test[:,head_item]
y_test_item = np.reshape(y_test_item,[y_test_item.shape[0],1])
print('********************************** Fitting DNN on %s Data **********************************' % y_name[head_item])
#Declare model
model_dnn=DenseNNDecoder(units=[128,64,32],num_epochs=15)
#Fit model
model_dnn.fit(X_train,y_train_item)
#Get predictions
y_valid_predicted=model_dnn.predict(X_valid)
#Get metric of fit
R2s=get_R2(y_test_item,y_valid_predicted)
print('R2s:', R2s)
#print 'saving prediction ...'
np.savez(y_name[head_item] + '_DNN_ypredicted.npz',y_test=y_test_item,y_prediction=y_valid_predicted)
#print 'saving model ...'
#joblib.dump(model_dnn, y_name[head_item] + '_LSTM.pkl')
print('plotting results...')
plot_results(y_test_item,y_valid_predicted,y_name[head_item],R2s,model_name='DNN')
return model_dnn
def RNN(X_train,y_train,X_valid,y_valid,y_name):
model_name = 'RNN'
# ### 4F. Simple RNN
#print '############################# RUNNING RNN #############################'
# In[ ]:
#Declare model
model_rnn=SimpleRNNDecoder(units=400,dropout=0,num_epochs=100)
for head_item in range(len(y_name)):
### fit one at a time and save/plot the results
#print '########### Fitting RNN on %s data ###########' % y_name[head_item]
y_train_item = y_train[:,head_item]
y_train_item = np.reshape(y_train_item,[y_train.shape[0],1])
#print 'shape of y_train_item = ', y_train_item.shape
y_valid_item = y_valid[:,head_item]
y_valid_item = np.reshape(y_valid_item,[y_valid_item.shape[0],1])
model_rnn.fit(X_train,y_train_item)
#Get predictions
y_valid_predicted_rnn=model_rnn.predict(X_valid)
#Get metric of fit
R2s_rnn=get_R2(y_valid_item,y_valid_predicted_rnn)
print(y_name[head_item], 'R2:', R2s_rnn)
np.savez(y_name[head_item] + '_rnn_ypredicted.npz',y_valid=y_valid_item,y_valid_predicted_rnn=y_valid_predicted_rnn)
plot_results(y_valid_item,y_valid_predicted_rnn,y_name[head_item],R2s_rnn,model_name)
def GRU():
# ### 4G. GRU (Gated Recurrent Unit)
# In[ ]:
#Declare model
model_gru=GRUDecoder(units=400,dropout=0,num_epochs=5)
#Fit model
model_gru.fit(X_train,y_train)
#Get predictions
y_valid_predicted_gru=model_gru.predict(X_valid)
#Get metric of fit
R2s_gru=get_R2(y_valid,y_valid_predicted_gru)
print('R2s:', R2s_gru)
def run_LSTM(X_train,X_valid,y_train,y_test,y_name, y_train_mean,y_train_std):
# ### 4H. LSTM (Long Short Term Memory)
#print 'head items to fit are: ', y_name
# In[ ]:
for head_item in range(len(y_name)):
y_train_item = y_train[:,head_item]
y_train_item = np.reshape(y_train_item,[y_train.shape[0],1])
y_test_item = y_test[:,head_item]
y_test_item = np.reshape(y_test_item,[y_test_item.shape[0],1])
#print '********************************** Fitting Deep Net on %s Data **********************************' % y_name[head_item]
#Declare model
model_lstm=LSTMDecoder(dropout=0.25,num_epochs=5)
model_lstm.get_means(y_train_mean,y_train_std) ### for un-zscoring during loss calculation ???
#Fit model
model_lstm.fit(X_train,y_train_item)
#Get predictions
y_valid_predicted_lstm=model_lstm.predict(X_valid)
training_prediction=model_lstm.predict(X_train)
R2s_training=get_R2(y_train_item,training_prediction)
#print 'R2 on training set = ', R2s_training
#Get metric of fit
R2s_lstm=get_R2(y_test_item,y_valid_predicted_lstm)
print('R2s:', R2s_lstm)
#print 'saving prediction ...'
np.savez(y_name[head_item] + '_LSTM_ypredicted.npz',y_test=y_test_item,y_prediction=y_valid_predicted_lstm,
y_train_=y_train_item,training_prediction=training_prediction,
y_train_mean=y_train_mean[head_item],y_train_std=y_train_std[head_item])
#print 'saving model ...'
#joblib.dump(model_lstm, y_name[head_item] + '_LSTM.pkl')
#print 'plotting results...'
plot_results(y_test_item,y_valid_predicted_lstm,y_name[head_item],R2s_lstm,model_name='LSTM')
return model_lstm
def plot_results(y_valid,y_valid_predicted,y_name,R2s,params='_',model_name='SVR'):
print('y_valid shape = ',y_valid.shape)
print('y_valid_predicted shape = ', y_valid_predicted.shape)
print(stats.pearsonr(y_valid,y_valid_predicted))
f, axarr = plt.subplots(2,dpi=600)
axarr[0].set_title(model_name +' Model of %s. R^2 = %f. r = %f ' % (y_name,R2s,stats.pearsonr(y_valid,y_valid_predicted)[0] ))
axarr[0].plot(y_valid,linewidth=0.1)
axarr[0].set_ylabel('Head Data')
axarr[0].plot(y_valid_predicted,linewidth=0.1,color='red')
axarr[1].set_title(params)
axarr[1].scatter(y_valid,y_valid_predicted,alpha=0.05,marker='o')
#axarr[1].set_title('R2 = ' + str(R2s))
axarr[1].set_xlabel('Actual')
axarr[1].set_ylabel('Predicted')
axarr[1].axis('equal')
sns.despine(left=True,bottom=True)
save_folder = './plots/' + model_name + '/'
if not os.path.exists(save_folder):
os.makedirs(save_folder)
f.savefig(save_folder + model_name + '_%s.pdf' % y_name)
# In[ ]:
if __name__ == "__main__":
model_type = sys.argv[1] ## wiener or lstm
head_file = sys.argv[2]
neural_data_file = sys.argv[3]
head_data,neural_data,y_name = load_data(head_file,neural_data_file)
#X_flat_train,X_flat_valid,X_train,X_valid,y_train,y_valid, y_train_mean,y_train_std = preprocess(head_data,neural_data)
if model_type == 'lstm':
data_model = run_LSTM(X_train,X_valid,y_train,y_valid,y_name, y_train_mean,y_train_std)
elif model_type == 'wiener':
data_model = Wiener(X_flat_train,X_flat_valid,y_train,y_valid)
elif model_type == 'svr':
data_model = SVR(X_flat_train,X_flat_valid,y_train,y_valid,y_name)
elif model_type == 'rnn':
RNN(X_train,y_train,X_valid,y_valid,y_name,y_name)
elif model_type == 'dnn':
data_model = DNN(X_flat_train,X_flat_valid,y_train,y_valid,y_name)
elif model_type == 'ridge':
X_flat_train,X_flat_valid,X_train,X_valid,y_train,y_valid, y_train_mean,y_train_std = preprocess(head_data,neural_data)
data_model = ridgeCV_model(X_flat_train,X_flat_valid,y_train,y_valid,y_name, y_train_mean,y_train_std)
elif model_type == 'ridge_band_time_search':
band_names = ['delta','theta','alpha','beta','low_gamma','high_gamma']
## neural data = samples x channels
for i in range(6):
X_flat_train,X_flat_valid,X_train,X_valid,y_train,y_valid, y_train_mean,y_train_std = preprocess(head_data,neural_data[:,i::6])
tmp_name = [name + '_' + band_names[i] for name in y_name]
data_model = ridgeCV_model(X_flat_train,X_flat_valid,y_train,y_valid,tmp_name, y_train_mean,y_train_std)
elif model_type == 'WienerCascade':
data_model = WienerCascade(X_flat_train,X_flat_valid,y_train,y_valid,y_name, y_train_mean,y_train_std)
elif model_type == 'BayesianRidge':
data_model = BayesianRidge_model(X_flat_train,X_flat_valid,y_train,y_valid,y_name, y_train_mean,y_train_std)
#with open('model_' + model_type + '_rawjerk','wb') as f:
# pickle.dump(data_model,f)