-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsth_plotter_sua.py
732 lines (523 loc) · 27.5 KB
/
psth_plotter_sua.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
from get_files import get_files
import os
import h5py
import pandas as pd
import numpy as np
from ephys_condition_signal import filter, downsample, rectify,median_rejection
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.image as mpimg
from matplotlib import gridspec
from scipy import stats
from simple_spikedetect import run_spike_detect
from bokeh.io import gridplot, output_file, show, save, vplot
from bokeh.plotting import figure
from bokeh.models import TapTool, HoverTool
from bokeh.colors import RGB
from bokeh.models import Range1d
from compiler.ast import flatten
from sliding_window import windowed_histogram
from cluster_histogram_plot import spike_trials
import scipy.io as sio
#1. collect time data from .raw.kwd files
def get_file_metadata(files):
all_metadata = []
for file in files:
kwd_file = h5py.File(file,'r')
metadata = {};
#data['ephys'] = kwd_file['/recordings/0/data']
metadata['sample_rate'] = kwd_file['/recordings/0/'].attrs['sample_rate'] # in samples (30e3)
metadata['start_time'] = kwd_file['/recordings/0/'].attrs['start_time'] # in samples
metadata['start_sample'] = kwd_file['/recordings/0/'].attrs['start_sample']
metadata['data_len'] = kwd_file['/recordings/0/data'].shape[0]
#data['length'] = len(data['ephys']) # this is in samples
#stat = os.stat(raw_kwd) # os.path.getmtime(raw_kwd)
all_metadata.append(metadata)
kwd_file.close()
print 'start time = '
for meta in all_metadata:
print 'start time =', meta['start_time'] #/meta['sample_rate']
print 'len = ', meta['data_len']
#global fs
#fs = kwd_file['/recordings/0/'].attrs['sample_rate'] # in samples (30e3)
global all_metadata
return all_metadata
def kwd_indices(metadata,stim_data): ### returns the indices of all exp files that have some stimuli in them
# e.g. file id = [0, 0, 0, 0, 0, 0, 0, 2, 3... 13, 14, 14, 14, 15] means stim[0] is in file 0; stim[-1] is in file 15 (after getting rid of stims that fall outside the ephys timerange).
# convert kwd data_len
global datalen_cumsum
datalen_cumsum = np.cumsum([meta['data_len'] for meta in metadata])
file_id =[]
stim_data_idx_tokeep = []
for j,time in enumerate(stim_data.times):
if time < datalen_cumsum[-1]: ## in the case that a given stim time > datalen_cumsum[-1] (i.e. it falls outside the range of all our files,)
file_id.append(len(np.where(time > datalen_cumsum)[0]))
#print time
#### ALSO: get indices of stim_data that we should keep:
stim_data_idx_tokeep.append(j)
else:
print 'Stim time sample %d appears to be greater than length of all files, %d. Skipping that trial.' % (time,datalen_cumsum[-1])
#print file_id
# convert stim times to samples:
#stim_data.times = np.round(stim_data.times * metadata[0]['sample_rate'])
#print stim_data.times
#### the uniques of file_id are the files being used. use these indices to get rid of fields in ephys?
print 'stim_data_idx_tokeep = ', stim_data_idx_tokeep
return file_id,stim_data_idx_tokeep
def extract_chunks(stim_data,stim_files,channels,ephys):
# take stim_data.times that correspond to a given experiment file, and extract time chunk from that file
## make list of stimulus indices for each file. e.g. stim_indices[0]=[0,7] means stimulus 0-7 is contained in first file.
exp_file,idx = np.unique(stim_files,return_index=True)
idx.sort()
print 'stim_files =', stim_files
print 'exp_file ==', exp_file
print 'idx = ',idx
stim_indices = []
for i in range(len(idx)):
if i+1 < len(idx):
stim_indices.append(idx[i:i+2])
else:
stim_indices.append([idx[i],len(stim_files)])
print 'stim_indices = ', stim_indices
#### not all kwd files had stimuli in them. get indices for which files to look at, using exp_file to get
i = []
for file in exp_file:
#i.append(np.where(ephys['exp_name']==file))
i.extend(np.where(ephys['exp_name']==file))
print 'i before = ', i
#i = [list(x) for x in i]
#i = [x[0].tolist()[0] for x in i]
i = [x[0].tolist() for x in i]
i.sort()
print 'i after = ', i
#### i = indices for files that have stimulis in them, out of all files
## e.g. i =[array([0]), array([2]), array([3])... array([14]), array([15])]
# ephys[i] = just the files that contain stim times.
#tmp = ephys[i]
#del ephys
ephys = ephys[i]
print 'ephys = ', ephys
##### !!!!! use this opportunity to get rid of any fields in ephys that don't have stimuli in them.
for idx,item in enumerate(ephys):
print 'EPHYS again!'
print 'idx,item = ',idx,item
### cycle through ephys and put in stim_indices to each row of ephys['stim_idx'] individually
for j in range(len(exp_file)):
ephys['stim_idx'][j] = stim_indices[j] ## where i = index, out of all files (19) where we should put things (just 15 files)
print 'j, stim_indices[j] =====', j, ephys['stim_idx'][j]
#ephys['stim_idx'][i] = stim_indices[i]
#print 'exp_file :', exp_file, 'stim indices: ', stim_indices
tmp_times = stim_data.times[ephys['stim_idx'][j][0]:ephys['stim_idx'][j][1]].values
ephys['stim_times'][j] = tmp_times #
time_range = 0.5*fs
#trial = np.zeros([time_range*2,len(stim_data)])
###### GO THROUGH EACH EXPERIMENT FILE
leftover_flag = 0
rem_samples = 0
leftunder_flag = 0
curr_trial_samples = 0
for i,file in enumerate(ephys['exp_name']):
#temp_times = stim_data.times[stim_indices[i][0]:stim_indices[i][1]].values
# temp_times = stim_data.times[]
kwd_file = h5py.File(file,'r')
data = np.array(kwd_file['/recordings/0/data']) # = samples x channels
print 'EXTRACTING CHUNKS FROM ', ephys['exp_name'][i]
for ch in channels:
data[:,ch] = filter(data[:,ch],[500, 12e3])
if isinstance( ephys['stim_times'][i], ( int, long )) == False:
######### check if ephys['stim_times'][i] is not an int. if it is, skip that file.
exp_trials = np.zeros([time_range*2,len(ephys['stim_times'][i]),len(channels)]) #!!## make this shape samples x trials x channels
for trial,j in enumerate(ephys['stim_times'][i]):
## trial = index of trial in file; j = time of each stimulus in file
print 'trial %d, stim time j = %d ' % (trial,j)
#print 'x == ', j-time_range, j+time_range
print 'stim times this trial: ', ephys['stim_times'][i][trial]
#print 'stim times next trial: ', ephys['stim_times'][i][trial+1]
### the time sample of stim in files 2+ is (e.g. 14,556,799) out of range of the file's length
### need to ? subtract file's start time from index ?
data_indices1 = int(j-time_range - ephys['start_time'][i])
data_indices2 = int(j+time_range - ephys['start_time'][i])
trialstart_time = int(j-time_range)
trialstop_time = int(j+time_range)
print 'ephys[start_time][i] = ', ephys['start_time'][i]
print 'ephys[stop_time][i] = ', ephys['stop_time'][i]
print 'trialstart_time = ', trialstart_time
print 'trialstop_time = ', trialstop_time
## check that the trial end sample is lower the experiment's end sample. if not, get remaining samples from next experiment
if trialstop_time <= ephys['stop_time'][i] and trialstart_time > ephys['start_time'][i]:
print 'Trial %d is within the bounds of the experiment' % trial
print 'data_indices2, ephys stop time = ', data_indices2,ephys['stop_time'][i]
if len(channels) > 1:
for ch_idx,ch in enumerate(channels):
exp_trials[:,trial,ch_idx] = data[data_indices1:data_indices2,ch] #!!#### make exp_trials samples x trial x channels e.g. exp_trials[:,trial,channels], where channels = [1,2,3..64]
elif len(channels) == 1:
exp_trials[:,trial] = np.reshape(data[data_indices1:data_indices2,channels],(data[data_indices1:data_indices2,channels].shape[0],1))
print 'exp_trials shape = ',exp_trials.shape
if leftover_flag == 1: # the previous trial spilled over into this experiment.
if len(channels) > 1:
for ch_idx,ch in enumerate(channels):
exp_trials[rem_samples:,trial-1,ch_idx] = data[0:rem_samples,ch] #!!#### make exp_trials samples x trial x channels e.g. exp_trials[:,trial,channels], where channels = [1,2,3..64]
elif len(channels) == 1:
exp_trials[rem_samples:,trial-1] = np.reshape(data[0:rem_samples,channels],(data[0:rem_samples,channels].shape[0],1))
if leftunder_flag == 1:
if len(channels) > 1:
for ch_idx,ch in enumerate(channels):
exp_trials[curr_trial_samples:,trial,ch_idx] = data[0:time_range+curr_trial_samples,ch] #!!#### make exp_trials samples x trial x channels e.g. exp_trials[:,trial,channels], where channels = [1,2,3..64]
elif len(channels) == 1:
exp_trials[curr_trial_samples:,trial] = np.reshape(data[0:time_range+curr_trial_samples,channels],(data[0:time_range+curr_trial_samples,channels].shape[0],1))
leftunder_flag=0
curr_trial_samples=0
leftover_flag=0
rem_samples=0
print 'leftover flag = ',leftover_flag
print 'leftunder_flag = ',leftunder_flag
elif trial == len(ephys['stim_times'][i]) and trialstop_time >= ephys['stop_time'][i]:
print 'Stim time %d on trial %d falls outside this experiments timerange' % (j,trial)
print 'data_indices2, ephys stop time = ', data_indices2,ephys['stop_time'][i]
rem_samples = data_indices2 - ephys['stop_time'][i]
print 'rem_samples = ', rem_samples
if len(channels) > 1:
for ch_idx,ch in enumerate(channels):
exp_trials[0:time_range*2-rem_samples,trial,ch_idx] = data[data_indices1:ephys['stop_time'][i],ch] #!!#### make exp_trials samples x trial x channels e.g. exp_trials[:,trial,channels], where channels = [1,2,3..64]
elif len(channels) == 1:
exp_trials[:,trial] = np.zeros(data[data_indices1:data_indices2,channels].shape[0],1)
exp_trials[0:time_range*2-rem_samples,trial] = np.reshape(data[data_indices1:ephys['stop_time'][i],channels],(data[data_indices1:ephys['stop_time'][i],channels].shape[0],1))
leftover_flag = 1
print 'leftover flag = ',leftover_flag
#elif # next trial's start time (data_indices1) < this experiment's stop time AND next trial's center time > this exp stop time
# fill that trial's data with remaining indices of this experiment data
#elif j = 0 and data_indices1 < 0:
# get previous experiment file.
# previous_kwd_file = h5py.File(ephys['exp_name'][i-1],'r')
# previous_data = np.array(previous_kwd_file['/recordings/0/data']) # = samples x channels
# print 'Going back to file ', ephys['exp_name'][i-1]
# for ch in channels:
# previous_data[:,ch] = filter(previous_data[:,ch],[500, 12e3])
# previous_kwd_file.close()
####data_indices1 < ephys['start_time'][i]:
# print 'Stim time %d on trial %d happened before this experiments timerange' % (j,trial)
# print 'data_indices1, ephys start time = ', data_indices1,ephys['start_time'][i]
elif trial == len(ephys['stim_times'][i]) and ephys['stim_times'][i+1][0]-time_range < ephys['stop_time'][i]:
print 'STIM SPILLING OVER INTO NEXT EXP, j = %d, stim time i+1 [0]-time_range = %d' % (j,ephys['stim_times'][i+1][0]-time_range)
# figure out how many samples are leftover here:
curr_trial_samples = ephys['stop_time'][i] - ephys['stim_times'][i+1][0]-time_range
if len(channels) > 1:
exp_trials_next = np.zeros([time_range*2,len(ephys['stim_times'][i+1]),len(channels)])
for ch_idx,ch in enumerate(channels):
exp_trials_next[0:curr_trial_samples,0,ch_idx] = data[curr_trial_samples:,ch]
elif len(channels) == 1:
exp_trials_next = np.zeros([time_range*2,len(ephys['stim_times'][i+1])])
exp_trials_next[0:curr_trial_samples,0] = data[curr_trial_samples:,channels]
# fill the i+1's data with the remaining chunk of this experiment:
ephys['trial_data'][i+1] = exp_trials_next
leftunder_flag = 1
ephys['trial_data'][i] = exp_trials #!!#### exp_trials is 2-D -- samples x channels?
#tmp_data = np.vstack([tmp_data,data[ephys['stim_times'][i] channel] ])
#print 'ephys stim times i = ', ephys['stim_times'][i]
print 'shape exp_trials = ', exp_trials.shape
elif isinstance( ephys['stim_times'][i], ( int, long )) == True:
print 'Nothing in file %s. Skipping.' % ephys['exp_name'][i]
pass
kwd_file.close()
data=None
#print 'data shape = ', data.shape
return ephys
#print 'shape trial : ', trial.shape
#for i,file in enumerate(exp_file):
# print 'File: ', file, '. Stim indices: ', stim_indices[i]
#print exp_file, ' ',idx
#for i,file in enumerate(exp_file):
#print stim_data[idx[i:i+2]] # the stim times that correspond to that file. stim_data[idx]
# print file,i
def organize_stim_dict(stim_data):
# input = stim_data
# output = dictionary of orientations and their indices within the stim_data structure, e.g. '18':[4,10,34,50,54]
#tmp_stim_data = stim_data.iloc[stim_data_idx_tokeep]
#print tmp_stim_data
stim_orientation,idx,inv = np.unique(stim_data.orientations,return_index=True,return_inverse=True)
stim_dict = dict()
for ori in stim_orientation:
stim_dict[str(ori)] = stim_data.orientations[stim_data.orientations==ori].index.values ### put indices of stim_data that correspond to this orientation, from inv
return stim_dict
def plot_psth(ephys,stim_data,stim_data_idx_tokeep,channels):
length = len(ephys['trial_data'][0])
print 'length,fs = ', length,fs
time = np.linspace(-0.5*length/fs,0.5*length/fs,length)
#time = downsample(time, 10)
#time -= time/2 ## make it -0.5 to +0.5 sec from stim onset.
print 'time === ', time
print 'shape time ',time.shape
#rand_dat = np.random.rand(len(ephys['trial_data']),100)
#print 'shape of data = ', ephys['trial_data'].shape
#for thing in ephys:
#x=2
#print type(thing['trial_data'])
tmp = [item['trial_data'] for item in ephys]
for item in tmp:
print 'shape of item in tmp = ',item.shape ##!!!! should be samples x trials x channels, e.g. (30e3,7,64)
data = np.concatenate(tmp,axis=1)
#data = rectify(data)
#data = downsample(data,10)
print 'shape data = ', data.shape
###### call parts of data by the stimulus identity (i.e. grating orientation) or index within stim_data.orientations
# get indices of same orientations:
### !!!! stim_data still contains elements that we're getting rid of b/c they didn't coincide with proper times in the ephys. Get rid of these?
print 'stim_data_idx_tokeep = ', stim_data_idx_tokeep
print 'shape stim_data = ', stim_data.shape
#stim_data.orientations = stim_data.orientations[stim_data_idx_tokeep]
#stim_data.times = stim_data.times[stim_data_idx_tokeep]
tmp_stim_data = stim_data.iloc[stim_data_idx_tokeep]
print tmp_stim_data
stim_orientation,idx,inv = np.unique(tmp_stim_data.orientations,return_index=True,return_inverse=True)
## inv = elements in stim_data.orientations corresponding to the uniques in stim_orientation
## e.g. stim_data.orientations = [18 162 0 18...]
# stim_orientation = [0 18 36 54...]
## inv = [1 9 0 1 ...]
#for orientation in stim_orientation: ## take individual orientations
## from data, (shaped [30e3,128] - samples x trials), get trial indices for each orientation and plot those separately
# stim_indices.append(idx[i])
print 'stim_orientation,idx,inv = ',stim_orientation,idx,inv
#print stim_data.orientations[stim_data.orientations==18].values
stim_dict = dict()
psth_folder = './psth/'
for ch_idx,ch in enumerate(channels):
##! check if directory ./psth exists; if not, create it
save_folder = psth_folder + 'channel_' + str(ch+1)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
##!! create directory save_dir = ./psth/ch
for ori in stim_orientation:
stim_dict[str(ori)] = tmp_stim_data.orientations[tmp_stim_data.orientations==ori].index.values ### put indices of stim_data that correspond to this orientation, from inv
print 'Plotting channel %d, orientation %d' % (ch+1,ori)
data_to_plot = downsample(rectify(data[:,stim_dict[str(ori)],ch_idx]),10).T
print 'Shape of plot data = ', data_to_plot.shape
plot_data = pd.DataFrame(data=data_to_plot,
columns = downsample(time,10))
#img = mpimg.imread('stinkbug.png')
fig = plt.figure(figsize=(20, 10))
gs = gridspec.GridSpec(2, 1, width_ratios=[1, 1])
ax1 = plt.subplot(gs[0])
ax1 = sns.heatmap(plot_data,robust=True,xticklabels=1000,cbar=False) #plt.subplot(gs[1])
ax1.set_title('PSTH for orientation '+str(ori))
ax2 = sns.set_style("white",{'axes.linewidth' : 0.01})
ax2 = plt.subplot(gs[1])
#ax2 = ax1.twinx()
ax2 = sns.tsplot(stats.trim_mean(data_to_plot,proportiontocut=0.25,axis=0),time=downsample(time,10),value='Voltage (uV)',color='black')
#plt.show()
#fig.savefig((save_folder + '/' + str(ori) +".pdf"))
plot_raw_traces(data[:,stim_dict[str(ori)],ch_idx],time,ori,ch,save_folder)
def plot_raw_traces(traces,time,stim_name,ch,save_folder,stim_dict,stim_data):
print 'shape traces[:,0] = ', traces[:,0].shape
print 'time shape = ', time.shape
#################### BOKEH FIGURE #########################
fig = plt.figure(figsize=(20, 10))
num_trials = traces.shape[1]
gs = gridspec.GridSpec(num_trials, 1, width_ratios=[1, 1]) ## a subplot for every trial
ax = range(num_trials)
all_spike_times = []
raster = figure(width=1000, height=400,y_axis_label='Trial Number',title='Raster + Histogram Channel %d, Orientation %s' % (ch+1,stim_name))
spike_vec = np.zeros([len(time),1])
time_vec = np.linspace(0,len(time),len(time))
print 'stim_dict[stim_name] = ', stim_dict[stim_name]
print 'stim_data.times[stim_dict[stim_name]] = ', stim_data.times[stim_dict[stim_name]]
print 'stim_name = ', stim_name
spike_mat = get_sua_times(stim_data.times[stim_dict[stim_name]]) ### this will need times of the stimuli...
# spike_times === time (30e3) x trials
for trial in range(num_trials):
print 'trial # ',trial
peaks,times,ifr_vec = run_spike_detect(traces[:,trial])
# for each trial, get spike times. Times = samples that have spikes, between -15e3 and +15e3?
all_spike_times.append(times)
spike_vec[times] += 1
trial_time = [t/30e3 - 0.5 for t in times]
#ax = plt.subplot(gs[trial])
#sns.tsplot(downsample(traces[:,trial],10),time=time,value='Voltage (uV)',color='black',linewidth=0.1)
ax[trial] = figure(width=1000, plot_height=500)
#s1 = figure(width=1000, plot_height=500, title='Spikes')
ax[trial].line(time,traces[:,trial]) ## (time is already downsampled)
ax[trial].circle(trial_time,peaks,color='red') ## convert to seconds and subtract 0.5 b/c plotting data on time from -0.5 to +0.5 seconds
#ax.set_ylim([-1000,1000])
#ax.set(y_range=Range1d(-1000, 1000))
#axes.append[ax]
raster.segment(x0=trial_time, y0=np.repeat(trial,len(times)), x1=trial_time,
y1=np.repeat(trial+1,len(times)), color="black", line_width=0.5)
p = gridplot([[s1] for s1 in ax]) #gridplot([[s1] for s1 in axes])
#fig.savefig(save_folder + '/raw_psth_'+str(stim_name)+'.pdf')
output_file(save_folder + '/raw_psth_'+str(stim_name)+'.html')
# show the results
save(p)
############## SPIKE HISTOGRAM FIGURE ############################
histo_fig = figure(width=1000, plot_height=500,y_axis_label='Firing Rate (Hz)',x_axis_label='Time (sec)',x_range=raster.x_range)
print 'len all_spike_times = ', len(all_spike_times)
num_bins = 50
hist, edges = np.histogram(flatten(all_spike_times), bins=num_bins)
bin_width = np.diff(edges)[0]/fs # in seconds.
edges = edges/fs - 0.5 ## plot x-axis in seconds.
histo_fig.quad(top=hist/bin_width/num_trials, bottom=0, left=edges[:-1], right=edges[1:], ## hist/bin_width = firing rate in Hz
fill_color="#036564", line_color="#033649")
#time
# pass this to the sliding window - get sum of spikes in each 100ms window.
win_size = 2**8
win_step = 2**2
##################!!!!!!!!!!!###### -- should "spike_vec" here be the a sorted "all_spike_times"? yes...
win_x,windowd_spike_vec = windowed_histogram(spike_vec,time_vec,win_size,win_step)
##################!!
histo_fig.line([t/fs -0.5 for t in win_x],[w/win_size*fs/num_trials for w in windowd_spike_vec],color='magenta')
output_file(save_folder + '/spike_histogram_'+str(stim_name)+'.html')
grid = gridplot([[raster], [histo_fig]])
save(grid)
############# SEABORN FIGURE ###############
#fig = plt.figure(figsize=(20, 10))
#num_trials = traces.shape[1]
#gs = gridspec.GridSpec(num_trials, 1, width_ratios=[1, 1]) ## a subplot for every trial
#sns.set_style("white",{'axes.linewidth' : 0.01})
#for trial in range(num_trials):
# print trial
# ax = plt.subplot(gs[trial])
# sns.tsplot(downsample(traces[:,trial],10),time=time,value='Voltage (uV)',color='black',linewidth=0.1)
#s1.circle([t/30e3 for t in times],peaks,color='red')
# ax.set_ylim([-1000,1000])
#sns.despine()
#fig.savefig(save_folder + '/raw_psth_'+str(stim_name)+'.pdf')
def get_sua_times(stim_times):
# for a given trial, return samples on which spikes occur, between -15e3 and 15e3 (with 0 = stim_time)
print 'stim time = ', stim_times
trial_len = 30e3 / 2 ## !! this is the half-range.
# get trial times
#spike_mat[trial,spike_times] +=1
spike_mat = np.zeros([len(stim_times),trial_len*2]) # trials x trial_length
spikes_file = 'subcluster2.mat'
spikes = sio.loadmat(spikes_file)
clust_name = sio.whosmat(spikes_file)[0][0]
print 'whosmat!! ', spikes[clust_name].shape
experiment_lengths = [meta['data_len'] for meta in metadata]
spike_times = spike_trials(spikes,clust_name,experiment_lengths)
print 'spike times = ', spike_times
for stim_time in stim_times:
trial_min = stim_time - trial_len
trial_max = stim_time + trial_len
starts_ind = np.where(spike_times>trial_min)
stops_ind = np.where(spike_times<trial_max)
start_stop_indices = np.intersect1d(starts_ind,stops_ind)
print start_stop_indices
spike_mat[spike_times[start_stop_indices]] += 1
print 'shape of spike_mat before returning from get_sua_times = ', spike_mat.shape
return spike_mat
def concatenate_kwd(raw_files,channels):
#ephys = np.array([])
for file_idx,file in enumerate(raw_files):
kwd_file = h5py.File(file,'r')
tmp_data = np.array(kwd_file['/recordings/0/data']) # = samples x channels
#for ch in channels:
# tmp_data[:,ch] = filter(tmp_data[:,ch],[500, 12e3])
print 'file_idx = ', file_idx
if file_idx == 0:
print 'first'
ephys = tmp_data[:,channels]
else:
print 'next'
print '! ephys shape = ',ephys.shape
print '! tmp_data[:,channels].shape = ',tmp_data[:,channels].shape
ephys = np.vstack((ephys,tmp_data[:,channels]))
print 'ephys temp shape = ', ephys.shape
tmp_data = None
#metadata = {};
#metadata['data_len'] = kwd_file['/recordings/0/data'].shape[0]
#all_metadata.append(metadata)
kwd_file.close()
print 'shape of ephys = ', ephys.shape
return ephys
def get_trial_data(ephys,channels,stim_data):
trial_range = 15000 # samples...
print 'len(stim_data) = ',len(stim_data)
print 'type len(stim_data) = ',type(len(stim_data))
all_trials = np.zeros((trial_range*2,len(stim_data),len(channels))) # samples x trials x channels
erase_trials = []
for trial,stim_time in enumerate(stim_data):
tmp_trial = np.zeros((trial_range*2,len(channels)))
if stim_time+trial_range < len(ephys):
tmp_trial = ephys[stim_time-trial_range:stim_time+trial_range,:] # all channels...
print 'tmp_trial shape = ', tmp_trial.shape
print 'Trial %d at time %d falls within of the length of ephys. Adding.' % (trial,stim_time)
all_trials[:,trial,:] = tmp_trial
else:
print 'Trial %d at time %d falls outside of the length of ephys. Skipping.' % (trial,stim_time)
erase_trials.append(trial)
#all_trials = all_trials[~np.all(all_trials==0,axis=1)] ## get rid of trials with all zeros
all_trials = np.delete(all_trials,erase_trials,axis=1)
print 'shape of all_trials = ', all_trials.shape
return all_trials
if __name__ == "__main__":
global fs
fs = 30e3
#data = np.random.rand(18e4,10)
#length = len(data)
#time = np.linspace(-0.5*length/fs,0.5*length/fs,length)
#time = downsample(time, 10)
#plot_raw_traces(data,time,18,12,'./psth/channel_13')
raw_files = get_files('kwd',os.getcwd()) # collect the kwd files
print 'raw files = ', raw_files
metadata = get_file_metadata(raw_files) # get their lengths + timestamps
print 'metadata[data_len] = ', [meta['data_len'] for meta in metadata]
print 'first = ', metadata[0]['data_len']
######### !!!!! channel numbering starts with 0 !!!!!!!!!###############
channels = np.array([15]) # np.arange(32) #
newephys = concatenate_kwd(raw_files,channels)
print 'newephys shape = ', newephys.shape
stim_data = pd.read_csv('oe_stim_times.csv') # read the CSV file with stimulus times and orientations
stim_data.times = np.rint(stim_data.times * fs)
stim_dict = organize_stim_dict(stim_data)
print 'stim_dict = ',stim_dict
all_trials = get_trial_data(newephys,channels,stim_data.times) # samples x trials x channels
psth_folder = './psth2/'
time = np.linspace(-0.5,0.5,30000) # time vec goes from -0.5 sec to +0.5 sec in 30000 steps.
for ch_idx,ch in enumerate(channels):
for ori in stim_dict:
save_folder = psth_folder + 'channel_' + str(ch+1)
#print stim_key, ' : ', stim_dict[stim_key]
if not os.path.exists(save_folder):
os.makedirs(save_folder)
print 'stim_dict[ori] = ', stim_dict[ori]
print 'ori = ', ori
plot_raw_traces(all_trials[:,stim_dict[ori],ch_idx],time,ori,ch,save_folder,stim_dict,stim_data)
#plot_sua_raster(spike_times,stim_times,save_folder)
#print metadata[0]['sample_rate']
file_id,stim_data_idx_tokeep = kwd_indices(metadata,stim_data)
stim_files = [raw_files[file] for file in file_id] ## the uniques of stim_files can be used to key ephys['exp_name'] - to avoid putting things in exp files that didn't have stimuli.
print 'raw_files = ', raw_files
print 'metadata = ', metadata
print 'file_id = ', file_id
print 'stim_files = ', stim_files
# use stim_data.times and file_id to extract relevant chunks from KWD files
################ MAKE EPHYS DATA STRUCTURE ################################
trial_size = fs # in samples...
dt = np.dtype([('exp_name','a26'),('exp_length',np.int64),('start_time',np.int64),('stop_time',np.int64),('stim_idx',np.int64,2),('stim_times',list),('trial_data',list)]) #(len(stim_data),trial_size)
#### 'exp_name' = name of kwd file, e.g. 'experiment68_100.raw.kwd'
#### 'exp_length' = # of samples in the kwd file (e.g. 9e6 for 5-min chunk at 30kHz)
#### 'start_time' = sample number for this file's start. =0 for first file; = 1st file' exp length for second file, etc.
#### 'stop_time' = sample number at which this experiment ends. = start_time + exp_length
#### 'stim_idx' = start-stop indices of behavior stimuli file. e.g.[0,7] = this kwd experiment file contains stimuli 0 through 7
#### 'trial_data' = [stim_idx[1]-stim_idx[0]] x length of trial (e.g. 1 sec). e.g. 7x30e3 if this file contains 7 stimuli.
ephys = np.zeros(len(raw_files),dtype=dt)
ephys['exp_name'] = raw_files
lengths = [meta['data_len'] for meta in metadata]
lengths_cumsum = np.cumsum(lengths)
starts = np.array([lengths_cumsum[0:-1]])
starts = np.insert(starts,0,0)
stops = starts + lengths
ephys['exp_length'] = lengths
ephys['start_time'] = starts ### [0, exp_len[0], exp_len[1] .... exp_len[-2]]
ephys['stop_time'] = lengths_cumsum ### [cumsum(exp_len)]
for idx,item in enumerate(ephys):
print 'EPHYS!'
print 'idx,item = ',idx,item
ephys = extract_chunks(stim_data,stim_files,channels,ephys)
#ephys = {'experiment':raw_files,'lengths':[meta['data_len'] for meta in metadata]}
plot_psth(ephys,stim_data,stim_data_idx_tokeep,channels)
#for thing in range(len(ephys)):
# ephys['stim_times'][thing] = [1*thing,2,3]
print 'shapes of trial data:'
for item in ephys:
if isinstance(item['stim_times'], ( int, long )) == False:
print item['trial_data'].shape