-
Notifications
You must be signed in to change notification settings - Fork 0
/
mountainsort_clusters_waveform_stats.py
231 lines (154 loc) · 10.6 KB
/
mountainsort_clusters_waveform_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import matplotlib.pylab as plt
from scipy import stats,signal
import seaborn as sns
import sys,os
sns.set_style('ticks')
plt.rcParams['pdf.fonttype'] = 'truetype'
import pandas as pd
import json
sys.path.append("/Users/guitchounts/Documents/GitHub/mountainlab/old/WIP/python/mda/")
sys.path.append('/Users/guitchounts/Dropbox (coxlab)/Scripts/Repositories/continuous-ephys/utils')
sys.path.append('/n/home11/guitchounts/code/continuous-ephys/utils')
sys.path.append('/n/home11/guitchounts/code/mountainlab/old/WIP/python/mda/')
from utils import read_titan_rhd
from mdaio import readmda
def filter(ephys,freq_range,filt_order = 4,filt_type='bandpass',fs=10.):
# design Elliptic filter:
[b,a] = signal.butter(filt_order,[freq/(fs/2) for freq in freq_range],btype=filt_type)
filtered_trace = signal.filtfilt(b,a,ephys,axis=0)
return filtered_trace
if __name__ == "__main__":
#tet4_firings = readmda('/Volumes/coxfs01/guitchounts/MountainSortCluster-master/TetrodeData/Tetrode4/data/firings2-4.mda')
### starting in a dir like GRat54/636xxxxx/0/
#tetrode_num = 1
waveform_stats = {}
for tetrode_num in range(1,17):
waveform_stats[tetrode_num] = {}
tet_raw = readmda('./TetrodeData/Tetrode%d/data/rawT%d.mda' %(tetrode_num,tetrode_num))
## ^^ can also load from original RHD file.
#### this stuff will actually be on /n/regal (or wherever you put it)
clust_dir = './Tetrode%d/mountainlab/prvbucket/_mountainprocess/' % tetrode_num
firings_files = [out_file for out_file in os.listdir(clust_dir) if out_file.startswith('output_firings_out')]
output_firings_out = firings_files[np.argmax([os.path.getsize(clust_dir + file) for file in firings_files])]
cluster_times_ids = readmda(clust_dir + output_firings_out)
metrics_files = [out_file for out_file in os.listdir(clust_dir) if out_file.startswith('output_metrics_out')]
output_metrics_out = metrics_files[np.argmax([os.path.getsize(clust_dir + file) for file in metrics_files])]
metrics_path = (clust_dir + output_metrics_out)
with open(metrics_path) as json_data_file:
metrics = json.load(json_data_file)
# rhd_path = '/Volumes/coxfs01/guitchounts/ephys/GRat27/636520606779599145.rhd'
# rhd = read_titan_rhd.ReadTitanRHD(rhd_path)
# length = 1e6
# ephys_timestamps,acc,ephys = rhd.read_file(length)
fs = 3e4
#tet_filt = tet_raw ## collecting stats on unfiltered waveforms! ###filter(tet_raw.T,[800,8e3],fs=fs).T
### This is uint16 (not int16) (because found some values like 32938, which is above 32,767, which is int16's upper lim. )
### so the range of our values is 0 to 65,535. To convert, subtract 32768 and * 1.95e-7
tet_raw = (tet_raw.astype('double') - 32768) * 1.95e-7 ## in Volts now.
tet_filt = filter(tet_raw.T,[800,8e3],fs=fs).T
### Gather the avg waveforms from each cluster:
## for plotting purposes, want a mat with the extracted waveforms:
## e.g. 4x 32 x 100000 waveforms. use cluster_times_ids mat to separate cluster IDs.
## in tet_filt, find the indexes of spiketimes and extract -16 until +16 timepoints for each.
spike_width = 64 # number of samples to take, centered at spike peak. #(16,16)
waveforms = [] ## list of arrays. length = number of clusters
waveforms_filt = []
isis = []
for clu in np.unique(cluster_times_ids[2,:]): #[9.,11.]: #
tmp_waveforms = np.empty([4,np.where(cluster_times_ids[2,:] == clu)[0].shape[0],spike_width]) ### 4xnum_spikesx32
peaks = cluster_times_ids[1,np.where(cluster_times_ids[2,:]==clu)[0]].astype('int') ## index of tet4 where peak happens
clu_times = cluster_times_ids[1,np.where(cluster_times_ids[2,:]==clu)[0]]
#clu_times = xx[1,np.where(xx[2,:]==clu)[0]]
isis.append(np.diff(clu_times)/fs*1e3) ## in milliseconds
tmp_waveforms = tet_raw[:,[np.arange(peak-spike_width/2,peak+spike_width/2,dtype='int') for peak in peaks]]
waveforms.append(tmp_waveforms)
tmp_waveforms_filt = tet_filt[:,[np.arange(peak-spike_width/2,peak+spike_width/2,dtype='int') for peak in peaks]]
waveforms_filt.append(tmp_waveforms_filt)
#### NO figure
clusts = np.unique(cluster_times_ids[2,:]).astype('int')
###f,axarr = plt.subplots(len(clusts),3,dpi=600,sharey='col',gridspec_kw={'hspace':2,'wspace':0,'width_ratios':[1,2,4]})
#'width_ratios':[1,2]}) # , figsize=(2,6)
#print('clusts = ',clusts)
for clu_idx,clu in enumerate(clusts):
waveform_stats[tetrode_num][clu] = {'widths' : [], 'heights' : [],
'slopes' : [], 'metrics' : [],
'fwhm' : [], 'waveform' : [], 'waveform_filt' : [] }
for ch in range(4):
#clust_times = np.where(xx[2,:].astype('int') == 9)[0]
#axarr[clu_idx].plot(range(0+32*ch,32+32*ch), np.mean(waveforms[clu_idx][ch,:,:],axis=0))
#print('clu,waveforms[clu_idx].shape = ',clu,waveforms[clu_idx].shape)
y = np.mean(waveforms[clu_idx][ch,:,:],axis=0) ### wavefoms[clu_idx] is [4 x num_spikes x 64]. y is just [64,]
y_filt = np.mean(waveforms_filt[clu_idx][ch,:,:],axis=0)
err = np.std(waveforms[clu_idx][ch,:,:],axis=0)
#x = range(0+spike_width*ch,spike_width+spike_width*ch)
x = np.arange(-(spike_width/2.)/fs*1e3,(spike_width/2.)/fs*1e3, 1./fs*1e3)
#### Interpolate waveforms to get better width estimates!
new_fs = fs*8
new_x = np.arange(-(spike_width/2.)/fs*1e3,(spike_width/2.)/fs*1e3, 1./new_fs*1e3)
new_y = np.interp(new_x,x,y)
new_peak = int(new_x.shape[0] / 2) ## not 32 but 512/2
half_max = new_y[new_peak] / 2
idx1 = (np.abs(new_y[:new_peak] - half_max)).argmin()
idx2 = new_peak+ (np.abs(new_y[new_peak:] - half_max)).argmin()
### FWHM = full width at half maximum:
fwhm = (idx2-idx1) / new_fs * 1e3
### get waveform stats (width, peak:trough, slope at the end, firing rates )
#min_wv = np.argmin(y)
#max_wv = min_wv + np.argmax(y.flatten()[min_wv:]) ### [min_wv:min_wv+spike_width/2])
peak = spike_width/2
if new_y[new_peak] < 0:
max_post_peak = new_peak + np.argmax(new_y.flatten()[new_peak:])
elif new_y[new_peak] > 0:
max_post_peak = new_peak + np.argmin(new_y.flatten()[new_peak:])
#width = (max_wv - min_wv) / fs * 1e3
#height = abs(y.flatten()[max_wv]) / abs(y.flatten()[min_wv])
width = (max_post_peak - new_peak) / new_fs * 1e3 ## in ms
height = abs(new_y.flatten()[peak]) / abs(new_y.flatten()[max_post_peak])
## want slope ~0.3-0.5 ms after peak
slope = np.mean(np.gradient( y[peak+9 : peak+15] )) ## was: y[-spike_width/4 : ] take the mean gradient of the end of the spike waveform...
waveform_stats[tetrode_num][clu]['widths'].append(width)
waveform_stats[tetrode_num][clu]['heights'].append(height)
waveform_stats[tetrode_num][clu]['slopes'].append(slope)
waveform_stats[tetrode_num][clu]['waveform'].append(y)
waveform_stats[tetrode_num][clu]['waveform_filt'].append(y_filt)
waveform_stats[tetrode_num][clu]['fwhm'].append(fwhm)
#clu_isi = np.diff(clu_times) ## convert from seconds to ms
#axarr[clu_idx,1].hist(isis[clu_idx],bins=np.logspace(-1,2,100),range=[0.1,100],histtype='stepfilled')
#n, bins, patches =
#plt.setp(patches, 'facecolor', 'magenta', 'alpha', 0.5)
#axarr[clu_idx,1].set_xscale('log')
#axarr[clu_idx,1].set_xlim([0.1, 100])
if len(isis[clu_idx]) > 1:
violations = np.float(len(np.where(isis[clu_idx]<=1.0)[0])) / np.float(len(isis[clu_idx])) * 100
else:
violations = 0
# axarr[clu_idx,1].set_title('Violations: %.2f%% <1ms' % (violations),fontdict={'fontsize' : 4})
# axarr[clu_idx,0].axes.xaxis.set_ticklabels([])
# axarr[clu_idx,0].axes.xaxis.set_ticks([])
# axarr[clu_idx,1].axes.xaxis.set_ticklabels([])
# axarr[clu_idx,1].axes.xaxis.set_ticks([])
# axarr[clu_idx,1].axes.yaxis.set_ticklabels([])
# axarr[clu_idx,1].axes.yaxis.set_ticks([])
waveform_stats[tetrode_num][clu]['metrics'] = metrics['clusters'][clu_idx] #['firing_rate']
# axarr[clu_idx,2].text(0,0,metrics['clusters'][clu_idx],wrap=True,fontdict={'fontsize' : 4})
# axarr[clu_idx,2].axes.yaxis.set_ticklabels([])
# axarr[clu_idx,2].axes.yaxis.set_ticks([])
# axarr[clu_idx,2].axes.xaxis.set_ticklabels([])
# axarr[clu_idx,2].axes.xaxis.set_ticks([])
# axarr[-1,1].set_xlabel('ISI (ms)')
# axarr[-1,1].axes.xaxis.set_ticklabels([0.1,1,10,100])
# axarr[-1,1].axes.xaxis.set_ticks([0.1,1,10,100])
#axarr[i].plot(np.mean(tet4_filt[i,[np.arange(j-32,j+32) for j in clust_times]],axis=0))
#axarr[i].plot(16,peaks[i,clust_times],'x')
#plt.tight_layout()
#sns.despine(left=True,bottom=True)
save_path = './Tetrode%d' % tetrode_num
#f.savefig(save_path + '/clusters.pdf')
# save cluster results with spike times:
# d = dict(times = cluster_times_ids[1,:]/3e4,clusters=cluster_times_ids[2,:]) ### save times in seconds and cluster assignments
# cluster_assignments = pd.DataFrame.from_dict(d)
# cluster_assignments.to_csv(save_path + '/cluster_assignments.csv')
print('Saving Tetrode %d !!!!' % tetrode_num)
waveform_stats_frame = pd.DataFrame.from_dict(waveform_stats)
waveform_stats_frame.to_csv(save_path + '/waveform_stats.csv')