-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathDESCRIPTION
49 lines (49 loc) · 3.36 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Package: netmeta
Title: Network Meta-Analysis using Frequentist Methods
Version: 3.0-0
Date: 2025-01-07
Depends: R (>= 4.0.0), meta (>= 8.0-1)
Imports: magic, MASS, ggplot2 (>= 3.0.0), metafor, Matrix, dplyr
Suggests: colorspace, rgl, hasseDiagram (>= 0.1.3), grid, mvtnorm, gridExtra,
igraph (>= 1.0.1), tictoc, writexl, cccp, R.rsp, brglm2
Authors@R: c(person("Gerta", "Rücker",
role = "aut",
comment = c(ORCID = "0000-0002-2192-2560")),
person("Ulrike", "Krahn",
role = "aut"),
person("Jochem", "König",
role = "aut",
comment = c(ORCID = "0000-0003-4683-0360")),
person("Orestis", "Efthimiou",
role = "aut",
comment = c(ORCID = "0000-0002-0955-7572")),
person("Annabel", "Davies",
role = "aut",
comment = c(ORCID = "0000-0003-2320-7701")),
person("Theodoros", "Papakonstantinou",
role = "aut",
comment = c(ORCID = "0000-0002-6630-6817")),
person("Guido", "Schwarzer",
role = c("aut", "cre"),
email = "[email protected]",
comment = c(ORCID = "0000-0001-6214-9087")))
URL: https://github.com/guido-s/netmeta
Description: A comprehensive set of functions providing frequentist methods for network meta-analysis (Balduzzi et al., 2023) <doi:10.18637/jss.v106.i02> and supporting Schwarzer et al. (2015) <doi:10.1007/978-3-319-21416-0>, Chapter 8 "Network Meta-Analysis":
- frequentist network meta-analysis following Rücker (2012) <doi:10.1002/jrsm.1058>;
- additive network meta-analysis for combinations of treatments (Rücker et al., 2020) <doi:10.1002/bimj.201800167>;
- network meta-analysis of binary data using the Mantel-Haenszel or non-central hypergeometric distribution method (Efthimiou et al., 2019) <doi:10.1002/sim.8158>;
- rankograms and ranking of treatments by the Surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2013) <doi:10.1016/j.jclinepi.2010.03.016>;
- ranking of treatments using P-scores (frequentist analogue of SUCRAs without resampling) according to Rücker & Schwarzer (2015) <doi:10.1186/s12874-015-0060-8>;
- split direct and indirect evidence to check consistency (Dias et al., 2010) <doi:10.1002/sim.3767>, (Efthimiou et al., 2019) <doi:10.1002/sim.8158>;
- league table with network meta-analysis results;
- 'comparison-adjusted' funnel plot (Chaimani & Salanti, 2012) <doi:10.1002/jrsm.57>;
- net heat plot and design-based decomposition of Cochran's Q according to Krahn et al. (2013) <doi:10.1186/1471-2288-13-35>;
- measures characterizing the flow of evidence between two treatments by König et al. (2013) <doi:10.1002/sim.6001>;
- automated drawing of network graphs described in Rücker & Schwarzer (2016) <doi:10.1002/jrsm.1143>;
- partial order of treatment rankings ('poset') and Hasse diagram for 'poset' (Carlsen & Bruggemann, 2014) <doi:10.1002/cem.2569>; (Rücker & Schwarzer, 2017) <doi:10.1002/jrsm.1270>;
- contribution matrix as described in Papakonstantinou et al. (2018) <doi:10.12688/f1000research.14770.3> and Davies et al. (2022) <doi:10.1002/sim.9346>;
- subgroup network meta-analysis.
License: GPL (>= 2)
Encoding: UTF-8
VignetteBuilder: R.rsp
RoxygenNote: 7.3.2