-
Notifications
You must be signed in to change notification settings - Fork 3
/
DESCRIPTION
28 lines (28 loc) · 1.79 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Package: metasens
Title: Statistical Methods for Sensitivity Analysis in Meta-Analysis
Version: 1.6-0
Date: 2024-09-09
Depends: meta (>= 5.5-0)
Authors@R: c(person("Guido", "Schwarzer",
role = c("cre", "aut"),
email = "[email protected]",
comment = c(ORCID = "0000-0001-6214-9087")),
person("James R.","Carpenter",
role = "aut",
comment = c(ORCID = "0000-0003-3890-6206")),
person("Gerta","Rücker",
role = "aut",
comment = c(ORCID = "0000-0002-2192-2560")))
Author: Guido Schwarzer [cre, aut] (<https://orcid.org/0000-0001-6214-9087>),
James R. Carpenter [aut] (<https://orcid.org/0000-0003-3890-6206>),
Gerta Rücker [aut] (<https://orcid.org/0000-0002-2192-2560>)
URL: https://github.com/guido-s/metasens https://link.springer.com/book/10.1007/978-3-319-21416-0
Description: The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 5 'Small-Study Effects in Meta-Analysis':
- Copas selection model described in Copas & Shi (2001) <DOI:10.1177/096228020101000402>;
- limit meta-analysis by Rücker et al. (2011) <DOI:10.1093/biostatistics/kxq046>;
- upper bound for outcome reporting bias by Copas & Jackson (2004) <DOI:10.1111/j.0006-341X.2004.00161.x>;
- imputation methods for missing binary data by Gamble & Hollis (2005) <DOI:10.1016/j.jclinepi.2004.09.013> and Higgins et al. (2008) <DOI:10.1177/1740774508091600>;
- LFK index test and Doi plot by Furuya-Kanamori et al. (2018) <DOI:10.1097/XEB.0000000000000141>.
License: GPL (>= 2)
Encoding: UTF-8
RoxygenNote: 7.3.2