forked from beckyfisher/FSSgam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction_check_correlations_v1.00.R
84 lines (77 loc) · 3.75 KB
/
function_check_correlations_v1.00.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
check.correlations=function(dat,parallel=F,n.cores=4){
classes.dat=sapply(dat,class)
fact.vars=names(which(classes.dat=="factor" | classes.dat=="character"))
cont.vars=names(which(classes.dat=="integer" | classes.dat=="numeric"))
if(length(cont.vars)>1){
cor.mat=cor(dat[,cont.vars],use="pairwise.complete.obs")}else{
cor.mat=matrix(1,ncol=1,nrow=1)
colnames(cor.mat)=cont.vars
rownames(cor.mat)=cont.vars}
if(length(fact.vars)>0){
if(length(cont.vars)>0){
lm.grid=expand.grid(list(fact.var=fact.vars,cont.var=cont.vars))
r.estimates=cbind(lm.grid,apply(lm.grid,MARGIN=1,FUN=function(x){
sqrt(summary(lm(dat[,x[2]]~factor(dat[,x[1]])))$r.sq)}))
fact.cont.upper.right=matrix(NA,ncol=length(fact.vars),nrow=length(cont.vars))
colnames(fact.cont.upper.right)=fact.vars;rownames(fact.cont.upper.right)=cont.vars
fact.cont.lower.left=matrix(NA,ncol=length(cont.vars),nrow=length(fact.vars))
colnames(fact.cont.lower.left)=cont.vars;rownames(fact.cont.lower.left)=fact.vars
fact.fact.lower.right=matrix(NA,ncol=length(fact.vars),nrow=length(fact.vars))
colnames(fact.fact.lower.right)=fact.vars;rownames(fact.fact.lower.right)=fact.vars
out.cor.mat=rbind(cbind(cor.mat,fact.cont.upper.right),
cbind(fact.cont.lower.left,fact.fact.lower.right))
# assign the estimated r values to the upper right and lower left corners
for(r in 1:nrow(r.estimates)){
# upper right
col.index=which(colnames(out.cor.mat)==r.estimates$fact.var[r])
row.index=which(rownames(out.cor.mat)==r.estimates$cont.var[r])
out.cor.mat[row.index,col.index]=r.estimates[r,3]
# lower left
col.index=which(colnames(out.cor.mat)==r.estimates$cont.var[r])
row.index=which(rownames(out.cor.mat)==r.estimates$fact.var[r])
out.cor.mat[row.index,col.index]=r.estimates[r,3]
}
}else{
fact.fact.lower.right=matrix(NA,ncol=length(fact.vars),nrow=length(fact.vars))
colnames(fact.fact.lower.right)=fact.vars;rownames(fact.fact.lower.right)=fact.vars
out.cor.mat=fact.fact.lower.right}
# estimate r values for fact-fact combinations
lm.grid=expand.grid(list(fact.var1=fact.vars,fact.var2=fact.vars))
require(nnet)
if(parallel==T){
require(doSNOW)
cl=makePSOCKcluster(n.cores)
registerDoSNOW(cl)
out.cor.dat<-foreach(r = 1:nrow(lm.grid),.packages=c('nnet'),.errorhandling='pass')%dopar%{
var.1=as.character(lm.grid[r,1])
var.2=as.character(lm.grid[r,2])
dat.r=na.omit(dat[,c(var.1,var.2)])
fit <- try(summary(multinom(dat.r[,var.1] ~ dat.r[,var.2],trace=F))$deviance,silent=T)
null.fit=try(summary(multinom(dat[,var.1] ~ 1,trace=F))$deviance,silent=T)
if(class(fit)!="try-error"){
if(round(fit,4)==round(null.fit,4)){r.est=0}else{
r.est=sqrt(1-(fit/null.fit))}
c(var.1,var.2,r.est)}}
stopCluster(cl)
registerDoSEQ()
}else{
out.cor.dat=list()
for(r in 1:nrow(lm.grid)){
var.1=as.character(lm.grid[r,1])
var.2=as.character(lm.grid[r,2])
dat.r=na.omit(dat[,c(var.1,var.2)])
fit <- try(summary(multinom(dat.r[,var.1] ~ dat.r[,var.2],trace=F))$deviance,silent=T)
null.fit=try(summary(multinom(dat[,var.1] ~ 1,trace=F))$deviance,silent=T)
out=NA
if(class(fit)!="try-error"){
if(round(fit,4)==round(null.fit,4)){r.est=0}else{
r.est=sqrt(1-(fit/null.fit))}
out=c(var.1,var.2,r.est)}
out.cor.dat=c(out.cor.dat,list(out))}
}
for(r in 1:length(out.cor.dat)){
out.cor.mat[which(colnames(out.cor.mat)==out.cor.dat[[r]][1]),
which(rownames(out.cor.mat)==out.cor.dat[[r]][2])]=
as.numeric(out.cor.dat[[r]][3])}}else{out.cor.mat=cor.mat}
return(out.cor.mat)
}