forked from cdkersey/chdl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
bvec-basic.h
271 lines (229 loc) · 6.92 KB
/
bvec-basic.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// A bvec is a fixed-length vector of bits.
#ifndef __BVEC_BASIC_H
#define __BVEC_BASIC_H
#include "bvec.h"
#include "gates.h"
#include "hierarchy.h"
namespace chdl {
// Concatenate two vectors
template <typename T, unsigned A, unsigned B>
vec<A + B, T> Cat(const vec<A, T> &a, const vec<B, T> &b)
{
return vec<A + B, T>(a, b);
}
// Concatenate a vector and a single element
template <typename T, unsigned A>
vec<A + 1, T> Cat(const vec<A, T> &a, const T &b)
{
return Cat(a, vec<1, T>(b));
}
template <typename T, unsigned B>
vec<B + 1, T> Cat(const T &a, const vec<B, T> &b)
{
return Cat(vec<1, T>(a), b);
}
static bvec<1> Flatten(const node &n) { return bvec<1>(n); }
static bvec<1> Flatten(const bvec<1> &n) { return n; }
template <typename T>
bvec<0> Flatten(const vec<0, T> &x)
{
return bvec<0>();
}
template <typename T>
bvec<sz<T>::value> Flatten(const vec<1, T> &x)
{
return Flatten(x[0]);
}
template <unsigned N, typename T>
bvec<N * sz<T>::value> Flatten(const vec<N, T> &x)
{
return vec<N*sz<T>::value, node>(
Flatten(x[range<N/2,N-1>()]),
Flatten(x[range<0,N/2-1>()])
);
}
static inline bvec<2> Cat(const node &a, const node &b) {
return Cat(bvec<1>(a), bvec<1>(b));
}
template <unsigned N> struct concatenator : public bvec<N> {
concatenator(const bvec<N> &x): bvec<N>(x) {}
template <unsigned M> concatenator<N + M> Cat(const bvec<M> &x) {
return concatenator<N + M>(chdl::Cat(*(bvec<N>*)this, x));
}
concatenator <N + 1> Cat(node x) {
return concatenator<N + 1>(chdl::Cat(*(bvec<N>*)this, x));
}
};
template <unsigned N> concatenator<N> Cat(const bvec<N> &x) {
return concatenator<N>(x);
}
static concatenator<1> Cat(const node &x) { return concatenator<1>(x); }
// Create an array of registers.
template <typename T> T Reg(const T &d, vec<sz<T>::value, bool> val) {
HIERARCHY_ENTER();
bvec<sz<T>::value> s;
T r;
Flatten(r) = s;
for (unsigned i = 0; i < sz<T>::value; ++i)
s[i] = Reg(Flatten(d)[i], val[i]);
HIERARCHY_EXIT();
return r;
}
template <typename T> T Reg(T d, unsigned long val=0) {
const unsigned N(sz<T>::value);
vec<sz<T>::value, bool> x;
for (unsigned i = 0; i < N; ++i) x[i] = (val>>i)&1;
return Reg(d, x);
}
// Add a write signal to an existing array of registers
template <typename T>
void Wreg(T &q, const T &d, node w, unsigned long val=0)
{
HIERARCHY_ENTER();
q = Reg(Mux(w, q, d), val);
HIERARCHY_EXIT();
}
template <typename T>
void Wreg(T &q, const T &d, node w, vec<sz<T>::value, bool> val)
{
HIERARCHY_ENTER();
q = Reg(Mux(w, q, d), val);
HIERARCHY_EXIT();
}
// Create an array of registers with a "write" signal
template <typename T>
T Wreg(node w, T d, unsigned long val=0)
{
T r;
Wreg(r, d, w, val);
return r;
}
template <typename T>
T Wreg(node w, T d, vec<sz<T>::value, bool> val)
{
T r;
Wreg(r, d, w, val);
return r;
}
// Create a binary integer literal with the given value
template <unsigned N> bvec<N> Lit(unsigned long long val) {
HIERARCHY_ENTER();
bvec<N> r;
for (size_t i = 0; i < N; ++i) r[i] = Lit((val>>i)&1);
HIERARCHY_EXIT();
return r;
}
// Zero-extend (or truncate if output is smaller)
template <unsigned N, unsigned M> bvec<N> Zext(bvec<M> x) {
HIERARCHY_ENTER();
bvec<N> rval;
if (M >= N) {
for (unsigned i = 0; i < N; ++i) rval[i] = x[i];
} else {
for (unsigned i = 0; i < M; ++i) rval[i] = x[i];
for (unsigned i = M; i < N; ++i) rval[i] = Lit(0);
}
HIERARCHY_EXIT();
return rval;
}
// Sign-extend (or truncate if output is smaller)
template <unsigned N, unsigned M> bvec<N> Sext(bvec<M> x) {
HIERARCHY_ENTER();
bvec<N> rval;
if (M >= N) {
for (unsigned i = 0; i < N; ++i) rval[i] = x[i];
} else {
for (unsigned i = 0; i < M; ++i) rval[i] = x[i];
for (unsigned i = M; i < N; ++i) rval[i] = x[M-1];
}
HIERARCHY_EXIT();
return rval;
}
// Perform an operation element-wise over an N-bit array.
template <node (*op)(const node &, const node &)>
bvec<0> OpElementwise(const bvec<0> &a, const bvec<0> &b)
{
return bvec<0>();
}
template <node (*op)(const node &, const node &)>
bvec<1> OpElementwise(const bvec<1> &a, const bvec<1> &b)
{
return bvec<1>{op(a[0], b[0])};
}
template <node (*op)(const node &, const node &), unsigned N>
bvec<N> OpElementwise(const bvec<N> &a, const bvec<N> &b)
{
return Cat(OpElementwise<op>(a[range<N/2,N-1>()], b[range<N/2,N-1>()]),
OpElementwise<op>(a[range<0,N/2-1>()], b[range<0,N/2-1>()]));
}
// Perform an all-reduce type operation over the given operation to produce
// a 1-bit result. Used to, say, construct N-input gates from a 2-input op.
template <node (*OP)(const node &, const node &), bool I>
node OpReduce(const bvec<0> &in)
{ return Lit(I); }
template <node (*op)(const node &, const node &), bool I>
node OpReduce(const bvec<1> &in)
{ return in[0]; }
template <node (*op)(const node &, const node &), bool I, unsigned N>
node OpReduce(bvec<N> in)
{
return op(OpReduce<op, I>(in[range<N/2,N-1>()]),
OpReduce<op, I>(in[range<0,N/2-1>()]));
}
// Some common operations in element-wise form
static bvec<0> Not(const bvec<0> &in) { return bvec<0>(); }
static bvec<1> Not(const bvec<1> &in) { return bvec<1>(!in[0]); }
template <unsigned N>
bvec<N> Not(const bvec<N> &in)
{
HIERARCHY_ENTER();
bvec<N> r(Cat(Not(in[range<N/2,N-1>()]), Not(in[range<0,N/2-1>()])));
HIERARCHY_EXIT();
return r;
}
template <unsigned N> bvec<N> And(const bvec<N> &a, const bvec<N> &b) {
HIERARCHY_ENTER();
bvec<N> r(OpElementwise<And>(a, b));
HIERARCHY_EXIT();
return r;
}
template <unsigned N> bvec<N> Or (const bvec<N> &a, const bvec<N> &b) {
HIERARCHY_ENTER();
bvec<N> r(OpElementwise<Or>(a, b));
HIERARCHY_EXIT();
return r;
}
template <unsigned N> bvec<N> Xor(const bvec<N> &a, const bvec<N> &b) {
HIERARCHY_ENTER();
bvec<N> r(OpElementwise<Xor>(a, b));
HIERARCHY_EXIT();
return r;
}
// Those same operations in all-reduce form
template <unsigned N> node AndN(const bvec<N> &in) {
HIERARCHY_ENTER();
node r(OpReduce<And, 1>(in));
HIERARCHY_EXIT();
return r;
}
template <unsigned N> node OrN (const bvec<N> &in) {
HIERARCHY_ENTER();
node r(OpReduce< Or, 0>(in));
HIERARCHY_EXIT();
return r;
}
template <unsigned N> node XorN(const bvec<N> &in) {
HIERARCHY_ENTER();
node r(OpReduce< Xor, 0>(in));
HIERARCHY_EXIT();
return r;
}
// Detect whether two values are equal
template <unsigned N> node EqDetect(const bvec<N> &a, const bvec<N> &b) {
HIERARCHY_ENTER();
node r(AndN(Not(Xor(a, b))));
HIERARCHY_EXIT();
return r;
}
};
#endif