forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_bytecode.cpp
403 lines (370 loc) · 14.8 KB
/
export_bytecode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#include <torch/csrc/jit/serialization/export_bytecode.h>
#include <utility>
#include <torch/csrc/jit/operator_upgraders/version_map.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/export.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/api/method.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/backends/backend_debug_info.h>
#include <torch/csrc/jit/frontend/source_range.h>
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/type_hashing.h>
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/method.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/serialization/callstack_debug_info_serialization.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/jit/serialization/python_print.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/type_name_uniquer.h>
#include <caffe2/serialize/inline_container.h>
namespace torch::jit {
static std::vector<Method> gatherGetSetStates(ObjectPtr obj) {
std::vector<Method> methods;
// Use DFS on IValue's to traverse dependencies of module._ivalue and
// add all setstate/getstates to initial stack.
std::vector<ObjectPtr> ivalue_stack;
ivalue_stack.emplace_back(obj);
while (!ivalue_stack.empty()) {
ObjectPtr cur = ivalue_stack.back();
ivalue_stack.pop_back();
auto type = cur->type();
Function* setstate = type->findMethod("__setstate__");
Function* getstate = type->findMethod("__getstate__");
if (getstate && setstate) {
if (setstate->isGraphFunction()) {
methods.emplace_back(cur, setstate);
}
if (getstate->isGraphFunction()) {
methods.emplace_back(cur, getstate);
}
} else {
for (size_t i = 0, n = type->numAttributes(); i < n; ++i) {
IValue field = cur->getSlot(i);
if (field.isObject()) {
ivalue_stack.emplace_back(field.toObject());
}
}
}
}
return methods;
}
static std::vector<Method> findAllDependentFunctions(
const Module& module,
Graph& graph) {
std::vector<Method> methods;
std::unordered_set<c10::string_view> called_method_names;
auto nodes = findAllNodes(graph, c10::prim::CallMethod, true);
for (Node* node : nodes) {
if (auto iface = node->input(0)->type()->castRaw<InterfaceType>()) {
const FunctionSchema* schema = iface->getMethod(node->s(attr::name));
called_method_names.insert(schema->name());
}
}
for (const auto& submodule : module.modules()) {
for (const auto& m : submodule.get_methods()) {
if (called_method_names.find(m.function().qualname().name()) !=
called_method_names.end()) {
methods.emplace_back(m);
}
}
}
return methods;
}
// NOTE: order of functions returned will be:
// 1. functions originated from the methods passed in will be first
// 2. All the dependent functions will come afterwards.
// This order is meaningful because currently mobile Module looks up
// methods with linear search.
static std::vector<std::unique_ptr<GraphFunction>> inlineFunctions(
const std::vector<Method>& initial_methods,
bool incl_dependent_functions) {
std::set<std::pair<std::string, Function*>> visited;
std::deque<Method> stack;
std::copy(
initial_methods.begin(),
initial_methods.end(),
std::back_inserter(stack));
std::vector<std::unique_ptr<GraphFunction>> inlined_functions;
while (!stack.empty()) {
Method cur = stack.front();
stack.pop_front();
auto tup = std::make_pair(
cur.owner()._ivalue()->type()->name()->qualifiedName(),
&cur.function());
if (visited.find(tup) != visited.end()) {
continue;
}
visited.insert(tup);
const auto& f = toGraphFunction(cur.function());
auto graph = f.graph()->copyUnique();
Inline(*graph);
c10::QualifiedName qn(*cur.owner()._ivalue()->type()->name(), f.name());
if (incl_dependent_functions) {
std::vector<Method> dependent_methods =
findAllDependentFunctions(cur.owner(), *graph);
std::copy(
dependent_methods.begin(),
dependent_methods.end(),
std::back_inserter(stack));
}
auto inlined_func = std::make_unique<GraphFunction>(
qn, std::move(graph), f.function_creator());
inlined_func->setSchema(f.getSchema());
inlined_functions.emplace_back(std::move(inlined_func));
}
return inlined_functions;
}
mobile::Code compileGraphToMobileCode(
const std::string& name,
const std::shared_ptr<Graph>& graph,
const CompilationOptions& compilation_options,
BackendDebugInfoRecorder& debug_info_recorder) {
MobileCode code(
graph,
name,
compilation_options.enable_default_value_for_unspecified_arg,
compilation_options.enable_default_args_before_out_args,
compilation_options.enable_emit_promoted_ops);
mobile::Code mobile_code;
// operator names
std::vector<std::string> method_names;
std::vector<int64_t> op_debug_handles;
int next_new_op_index = 0;
auto op_to_specified_args = code.op_to_num_specified_args();
for (size_t i = 0; i < code.instructions().size(); ++i) {
Instruction ins = code.instructions()[i];
if ((ins.op == OP || ins.op == OPN) && ins.X == next_new_op_index) {
// Found a new op (assumes new operators ordered by ascending ins.X)
auto node = code.instructions_source()[i];
const c10::OperatorName& opname = node->schema().operator_name();
auto unique_name = c10::toString(opname);
// For operator with vararg, adding default arguments would be confusing
// and is not allowed. For an operator with num_args = -1, it means the
// number of arguments is not available for this operator, we don't do any
// backward compatibility adaptation at runtime.
std::optional<int> num_args = c10::nullopt;
auto it = op_to_specified_args.find(unique_name);
if (it != op_to_specified_args.end()) {
num_args = it->second;
}
mobile_code.operator_input_sizes_.emplace_back(num_args.value_or(-1));
mobile_code.op_names_.emplace_back(opname);
auto func = mobile::makeOperatorFunction(opname, num_args);
TORCH_INTERNAL_ASSERT(
func.has_value(),
"Operator with name: ",
toString(opname),
" not found");
mobile_code.operators_.emplace_back(*func);
next_new_op_index++;
}
// CALL nodes at this point represent built-in (i.e. non-Graph)
// functions that were not inlined. Here we convert the CALL
// instructions for these functions into INTERFACE_CALL instructions
// s.t. at runtime, we will look up the Function* on the Type of the
// 0th argument in the stack and call that directly.
if (ins.op == CALL) {
auto node = code.instructions_source()[i];
if (node->kind() == prim::CallMethod) {
// NB: replacing instruction
auto method_name_idx =
code.constant_table().size() + method_names.size();
method_names.emplace_back(node->s(attr::name));
ins = Instruction{
INTERFACE_CALL,
static_cast<int32_t>(method_name_idx),
static_cast<uint16_t>(node->inputs().size())};
} else {
TORCH_INTERNAL_ASSERT(
false, "Unsupported node kind on CALL opcode for mobile");
}
} else if (ins.op == RET) {
auto node = code.instructions_source()[i];
for (const auto& input : node->inputs()) {
const auto& input_type = input->type();
if (input_type->kind() == TypeKind::ListType ||
input_type->kind() == TypeKind::DictType) {
for (const TypePtr& element_type : input_type->containedTypes()) {
TORCH_CHECK(
element_type->kind() != TypeKind::ClassType,
"Returning a list or dictionary with pytorch class type ",
"is not supported in mobile module "
"(List[Foo] or Dict[int, Foo] for class Foo(torch.nn.Module)). "
"Workaround: instead of using pytorch class as their element type, ",
"use a combination of list, dictionary, and single types.");
}
}
}
} else {
TORCH_CHECK(
isOpSupportedInMobile(ins.op),
toString(ins.op),
" is not supported in mobile module.");
}
auto node = code.instructions_source()[i];
int64_t debug_handle = debug_info_recorder.getNextDebugHandle(node);
// Note 1-to-1 correspondence between instructions and debug handles
mobile_code.instructions_.emplace_back(ins);
mobile_code.debug_handles_.emplace_back(debug_handle);
}
// copy constants
mobile_code.constants_ = code.constant_table();
// Make a copy of the constants and append the method names
// that we emitted for the converted INTERFACE_CALL nodes above.
for (auto& method_name : method_names) {
mobile_code.constants_.emplace_back(method_name);
}
mobile_code.types_ = code.type_table();
mobile_code.register_size_ = code.register_size();
return mobile_code;
}
std::unique_ptr<mobile::Function> convertJitFunctionToMobileFunction(
const GraphFunction& function,
const CompilationOptions& options) {
BackendDebugInfoRecorder debug_handle;
auto mobileCode = compileGraphToMobileCode(
function.name(), function.graph(), options, debug_handle);
const auto& schema = function.getSchema();
return std::make_unique<mobile::Function>(
function.qualname(), std::move(mobileCode), schema);
}
IValue convertMobileFunctionToCodeTable(
const mobile::Function& func,
const CompilationOptions& compilation_options) {
auto code = func.get_code();
std::vector<IValue> instructions;
instructions.reserve(code.instructions_.size());
for (Instruction ins : code.instructions_) {
instructions.emplace_back(to_tuple({toString(ins.op), ins.X, ins.N}));
}
std::vector<IValue> operators;
operators.reserve(code.op_names_.size());
for (unsigned i = 0; i < code.op_names_.size(); ++i) {
const auto& opname = code.op_names_[i];
const int size = code.operator_input_sizes_[i];
if (compilation_options.enable_default_value_for_unspecified_arg) {
operators.emplace_back(to_tuple({opname.name, opname.overload_name}));
} else {
operators.emplace_back(
to_tuple({opname.name, opname.overload_name, size}));
}
}
std::vector<IValue> types;
for (const TypePtr& t : code.types_) {
std::string type_str = t->annotation_str();
types.emplace_back(type_str);
}
auto register_size = static_cast<int>(code.register_size_);
auto codeTable = Table(
{{"instructions", to_tuple(instructions)},
{"operators", to_tuple(operators)},
{"constants", to_tuple(code.constants_)},
{"types", to_tuple(types)},
{"register_size", register_size}});
return codeTable;
}
static void checkSchema(const c10::FunctionSchema& schema) {
TORCH_CHECK(
schema.overload_name().empty(), // @TODO: is this check correct?
"Overloads are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_vararg(), "Python *args are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_varret(),
"A variable number of return values is not supported in mobile modules.");
}
static bool isLoweredModule(const Module& m) {
c10::QualifiedName type_name;
if (m.type()->name()) {
type_name = m.type()->name().value();
}
bool isLoweredModule = false;
for (const auto& atom : type_name.atoms()) {
if (atom == "LoweredModule") {
isLoweredModule = true;
break;
}
}
return isLoweredModule;
}
// Check if the global static map of backend debug info
// contains debug info for this module and any of its children.
// If so combine all the maps together and return one.
static void getBackendDebugInfoMap(
const Module& m,
BackendDebugInfoMapType& debug_map) {
if (isLoweredModule(m)) {
auto backend_debug_info =
m.attr("__backend_debug_info").toCustomClass<PyTorchBackendDebugInfo>();
const auto& map = backend_debug_info->getDebugInfoMap();
if (map) {
debug_map.insert(map.value().begin(), map.value().end());
}
}
for (const auto& c : m.children()) {
getBackendDebugInfoMap(c, debug_map);
}
}
static uint64_t get_min_operator_version_from_version_map(
const mobile::Module& module) {
uint64_t min_version = caffe2::serialize::kMinSupportedFileFormatVersion;
for (const auto& func : module.compilation_unit().methods()) {
for (const auto& op_name : func->get_code().op_names_) {
auto schema_name = op_name.overload_name.empty()
? op_name.name
: op_name.name + "." + op_name.overload_name;
auto version_entry = get_operator_version_map().find(schema_name);
if (version_entry != get_operator_version_map().end()) {
const auto& entry = version_entry->second;
min_version = std::max(
min_version, uint64_t(entry[entry.size() - 1].bumped_at_version));
}
}
}
return min_version;
}
mobile::Module jitModuleToMobile(
const Module& module,
const CompilationOptions& options) {
std::shared_ptr<mobile::CompilationUnit> mcu =
std::make_shared<mobile::CompilationUnit>();
BackendDebugInfoRecorder debug_info_recorder;
std::vector<Method> methods_to_export = module.get_methods();
std::vector<Method> getsetstates = gatherGetSetStates(module._ivalue());
std::copy(
getsetstates.begin(),
getsetstates.end(),
std::back_inserter(methods_to_export));
for (const auto& func :
inlineFunctions(methods_to_export, options.incl_interface_call)) {
auto mobile_code = compileGraphToMobileCode(
func->name(), func->graph(), options, debug_info_recorder);
const auto& schema = func->getSchema();
checkSchema(schema);
auto mobile_func = std::make_unique<mobile::Function>(
func->qualname(), std::move(mobile_code), schema);
mcu->register_function(std::move(mobile_func));
}
mobile::Module m(module._ivalue(), mcu);
m.setHasDebugHandles(true);
BackendDebugInfoMapType backend_debug_info_map;
getBackendDebugInfoMap(module, backend_debug_info_map);
auto debug_handle_cs_ptr_map = debug_info_recorder.stopRecording();
debug_handle_cs_ptr_map.insert(
backend_debug_info_map.begin(), backend_debug_info_map.end());
m.setDebugTable(MobileDebugTable(
debug_handle_cs_ptr_map.begin(), debug_handle_cs_ptr_map.end()));
m.set_min_operator_version(get_min_operator_version_from_version_map(m));
m.set_bytecode_version(options.model_version);
return m;
}
} // namespace torch::jit