forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_test_common.py
803 lines (683 loc) · 27.1 KB
/
onnx_test_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# Owner(s): ["module: onnx"]
from __future__ import annotations
import contextlib
import copy
import dataclasses
import io
import logging
import os
import unittest
import warnings
from typing import (
Any,
Callable,
Collection,
Iterable,
List,
Mapping,
Optional,
Sequence,
Tuple,
Type,
Union,
)
import numpy as np
import onnxruntime
import pytest
import pytorch_test_common
import torch
from torch import export as torch_export
from torch.onnx import _constants, verification
from torch.onnx._internal import _beartype
from torch.onnx._internal.fx import diagnostics
from torch.testing._internal import common_utils
from torch.testing._internal.opinfo import core as opinfo_core
from torch.types import Number
_NumericType = Union[Number, torch.Tensor, np.ndarray]
_ModelType = Union[torch.nn.Module, Callable, torch_export.ExportedProgram]
_InputArgsType = Optional[
Union[torch.Tensor, int, float, bool, Sequence[Any], Mapping[str, Any]]
]
_OutputsType = Sequence[_NumericType]
onnx_model_dir = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
os.pardir,
"repos",
"onnx",
"onnx",
"backend",
"test",
"data",
)
pytorch_converted_dir = os.path.join(onnx_model_dir, "pytorch-converted")
pytorch_operator_dir = os.path.join(onnx_model_dir, "pytorch-operator")
def run_model_test(test_suite: _TestONNXRuntime, *args, **kwargs):
options = verification.VerificationOptions()
kwargs["opset_version"] = test_suite.opset_version
kwargs["keep_initializers_as_inputs"] = test_suite.keep_initializers_as_inputs
if hasattr(test_suite, "check_shape"):
options.check_shape = test_suite.check_shape
if hasattr(test_suite, "check_dtype"):
options.check_dtype = test_suite.check_dtype
names = {f.name for f in dataclasses.fields(options)}
keywords_to_pop = []
for k, v in kwargs.items():
if k in names:
setattr(options, k, v)
keywords_to_pop.append(k)
for k in keywords_to_pop:
kwargs.pop(k)
return verification.verify(*args, options=options, **kwargs)
def assert_dynamic_shapes(onnx_program: torch.onnx.ONNXProgram, dynamic_shapes: bool):
"""Assert whether the exported model has dynamic shapes or not.
Args:
onnx_program (torch.onnx.ONNXProgram): The output of torch.onnx.dynamo_export.
dynamic_shapes (bool): Whether the exported model has dynamic shapes or not.
When True, raises if graph inputs don't have at least one dynamic dimension
When False, raises if graph inputs have at least one dynamic dimension.
Raises:
AssertionError: If the exported model has dynamic shapes and dynamic_shapes is False and vice-versa.
"""
if dynamic_shapes is None:
return
model_proto = onnx_program.model_proto
# Process graph inputs
dynamic_inputs = []
for inp in model_proto.graph.input:
dynamic_inputs += [
dim
for dim in inp.type.tensor_type.shape.dim
if dim.dim_value == 0 and dim.dim_param != ""
]
assert dynamic_shapes == (
len(dynamic_inputs) > 0
), "Dynamic shape check failed for graph inputs"
def parameterize_class_name(cls: Type, idx: int, input_dicts: Mapping[Any, Any]):
"""Combine class name with the parameterized arguments.
This function is passed to `parameterized.parameterized_class` as the
`class_name_func` argument.
"""
suffix = "_".join(f"{k}_{v}" for k, v in input_dicts.items())
return f"{cls.__name__}_{suffix}"
class _TestONNXRuntime(pytorch_test_common.ExportTestCase):
opset_version = _constants.ONNX_DEFAULT_OPSET
keep_initializers_as_inputs = True # For IR version 3 type export.
is_script = False
check_shape = True
check_dtype = True
def setUp(self):
super().setUp()
onnxruntime.set_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
os.environ["ALLOW_RELEASED_ONNX_OPSET_ONLY"] = "0"
self.is_script_test_enabled = True
# The exported ONNX model may have less inputs than the pytorch model because of const folding.
# This mostly happens in unit test, where we widely use torch.size or torch.shape.
# So the output is only dependent on the input shape, not value.
# remained_onnx_input_idx is used to indicate which pytorch model input idx is remained in ONNX model.
def run_test(
self,
model,
input_args,
input_kwargs=None,
rtol=1e-3,
atol=1e-7,
do_constant_folding=True,
dynamic_axes=None,
additional_test_inputs=None,
input_names=None,
output_names=None,
fixed_batch_size=False,
training=torch.onnx.TrainingMode.EVAL,
remained_onnx_input_idx=None,
verbose=False,
):
def _run_test(m, remained_onnx_input_idx, flatten=True, ignore_none=True):
return run_model_test(
self,
m,
input_args=input_args,
input_kwargs=input_kwargs,
rtol=rtol,
atol=atol,
do_constant_folding=do_constant_folding,
dynamic_axes=dynamic_axes,
additional_test_inputs=additional_test_inputs,
input_names=input_names,
output_names=output_names,
fixed_batch_size=fixed_batch_size,
training=training,
remained_onnx_input_idx=remained_onnx_input_idx,
flatten=flatten,
ignore_none=ignore_none,
verbose=verbose,
)
if isinstance(remained_onnx_input_idx, dict):
scripting_remained_onnx_input_idx = remained_onnx_input_idx["scripting"]
tracing_remained_onnx_input_idx = remained_onnx_input_idx["tracing"]
else:
scripting_remained_onnx_input_idx = remained_onnx_input_idx
tracing_remained_onnx_input_idx = remained_onnx_input_idx
is_model_script = isinstance(
model, (torch.jit.ScriptModule, torch.jit.ScriptFunction)
)
if self.is_script_test_enabled and self.is_script:
script_model = model if is_model_script else torch.jit.script(model)
_run_test(
script_model,
scripting_remained_onnx_input_idx,
flatten=False,
ignore_none=False,
)
if not is_model_script and not self.is_script:
_run_test(model, tracing_remained_onnx_input_idx)
@_beartype.beartype
def run_test_with_fx_to_onnx_exporter_and_onnx_runtime(
self,
model: _ModelType,
input_args: Sequence[_InputArgsType],
*,
input_kwargs: Optional[Mapping[str, _InputArgsType]] = None,
rtol: Optional[float] = 1e-3,
atol: Optional[float] = 1e-7,
has_mutation: bool = False,
additional_test_inputs: Optional[
List[
Union[
Tuple[Sequence[_InputArgsType], Mapping[str, _InputArgsType]],
Tuple[Sequence[_InputArgsType]],
]
]
] = None,
skip_dynamic_shapes_check: bool = False,
):
"""Compare the results of PyTorch model with exported ONNX model
Args:
model (_ModelType): PyTorch model
input_args (Sequence[_InputArgsType]): torch input arguments
input_kwargs (Mapping[str, _InputArgsType]): torch input kwargs
rtol (float, optional): relative tolerance. Defaults to 1e-3.
atol (float, optional): absolute tolerance. Defaults to 1e-7.
has_mutation (bool, optional): Whether the model mutates its input or state.
`mutation` as `True` incurs extra overhead of cloning the inputs and model.
Defaults to False.
additional_test_inputs: Test the models with another dataset input, which
is designed for dynamic axes testing. Defaults to None. It's a list of
different input sets in tuples. Inside tuple, the first element is a tuple
of args, and the second element is a dict of kwargs. Remember to put comma
even if the following element is not provided.
For example,
additional_test_inputs = [((args1, args2), {"kwargs":1}), ((args1,),), ((), {"kwargs":1})]
skip_dynamic_shapes_check: Whether to skip dynamic shape check. Defaults to False.
Must be used when tests do not produce dynamic shapes even when dynamic shape feature is enabled.
This is needed because Torch Dynamo uses the dynamic_shapes flag as a hint, only.
"""
# avoid mutable data structure
if input_kwargs is None:
input_kwargs = {}
if (
has_mutation
and self.model_type
!= pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM
):
ref_model = _try_clone_model(model)
ref_input_args, ref_input_kwargs = _try_clone_inputs(
input_args, input_kwargs
)
else:
ref_model = model
ref_input_args = input_args
ref_input_kwargs = input_kwargs
assert isinstance(ref_model, torch.nn.Module) or callable(
ref_model
), "Model must be a torch.nn.Module or callable"
if (
self.model_type
== pytorch_test_common.TorchModelType.TORCH_EXPORT_EXPORTEDPROGRAM
):
ref_model = torch.export.export(ref_model, args=ref_input_args)
if (
self.dynamic_shapes
): # TODO: Support dynamic shapes for torch.export.ExportedProgram
# https://github.com/pytorch/pytorch/issues/113705
pytest.xfail(
reason="torch.export.ExportedProgram does not support dynamic shapes"
)
# Feed args and kwargs into exporter.
# Note that exporter should flatten kwargs into positional args the exported model;
# since ONNX doesn't represent kwargs.
export_error: Optional[torch.onnx.OnnxExporterError] = None
try:
onnx_program = torch.onnx.dynamo_export(
ref_model,
*ref_input_args,
**ref_input_kwargs,
export_options=torch.onnx.ExportOptions(
op_level_debug=self.op_level_debug,
dynamic_shapes=self.dynamic_shapes,
diagnostic_options=torch.onnx.DiagnosticOptions(
verbosity_level=logging.DEBUG
),
),
)
except torch.onnx.OnnxExporterError as e:
export_error = e
onnx_program = e.onnx_program
if diagnostics.is_onnx_diagnostics_log_artifact_enabled():
onnx_program.save_diagnostics(
f"test_report_{self._testMethodName}"
f"_op_level_debug_{self.op_level_debug}"
f"_dynamic_axes_{self.dynamic_shapes}"
f"_model_type_{self.model_type}"
".sarif"
)
if export_error is not None:
raise export_error
if not skip_dynamic_shapes_check:
assert_dynamic_shapes(onnx_program, self.dynamic_shapes)
if isinstance(ref_model, torch.export.ExportedProgram):
ref_model = ref_model.module()
_compare_pytorch_onnx_with_ort(
onnx_program,
ref_model,
input_args,
input_kwargs,
atol,
rtol,
has_mutation=has_mutation,
)
# This confirms the exported mode accepts different input shapes
# when dynamic shape is enabled.
if additional_test_inputs and self.dynamic_shapes:
for another_input in additional_test_inputs:
if len(another_input) > 2:
raise ValueError(
f"test_inputs should only have tuple args and dictionary kwargs. But receives: {len(another_input)}"
)
additional_input_args = another_input[0]
additional_input_kwargs = (
another_input[1]
if len(another_input) == 2 and another_input[1] is not None
else {}
)
_compare_pytorch_onnx_with_ort(
onnx_program,
ref_model,
additional_input_args,
additional_input_kwargs,
atol,
rtol,
has_mutation=has_mutation,
)
@_beartype.beartype
def run_ort(
onnx_model: Union[str, torch.onnx.ONNXProgram],
pytorch_inputs: Sequence[_InputArgsType],
) -> _OutputsType:
"""Run ORT on the given ONNX model and inputs
Used in test_fx_to_onnx_with_onnxruntime.py
Args:
onnx_model (Union[str, torch.onnx.ONNXProgram]): Converter ONNX model
pytorch_inputs (Sequence[_InputArgsType]): The given torch inputs
Raises:
AssertionError: ONNX and PyTorch should have the same input sizes
Returns:
_OutputsType: ONNX model predictions
"""
if isinstance(onnx_model, torch.onnx.ONNXProgram):
buffer = io.BytesIO()
onnx_model.save(buffer)
ort_model = buffer.getvalue()
else:
ort_model = onnx_model
# Suppress floods of warnings from ONNX Runtime
session_options = onnxruntime.SessionOptions()
session_options.log_severity_level = 3 # Error
session = onnxruntime.InferenceSession(
ort_model, providers=["CPUExecutionProvider"], sess_options=session_options
)
input_names = [ort_input.name for ort_input in session.get_inputs()]
if len(input_names) != len(pytorch_inputs):
raise AssertionError(
f"Expected {len(input_names)} inputs, got {len(pytorch_inputs)}"
)
ort_input = {
k: torch.Tensor.numpy(v, force=True)
for k, v in zip(input_names, pytorch_inputs)
}
return session.run(None, ort_input)
@_beartype.beartype
def _try_clone_model(model: _ModelType) -> _ModelType:
"""Used for preserving original model in case forward mutates model states."""
try:
return copy.deepcopy(model)
except Exception:
warnings.warn(
"Failed to clone model. Model state might be mutated during verification."
)
return model
@_beartype.beartype
def _try_clone_inputs(input_args, input_kwargs):
ref_input_args = copy.deepcopy(input_args)
ref_input_kwargs = copy.deepcopy(input_kwargs)
return ref_input_args, ref_input_kwargs
@_beartype.beartype
def _compare_pytorch_onnx_with_ort(
onnx_program: torch.onnx.ONNXProgram,
model: _ModelType,
input_args: Sequence[_InputArgsType],
input_kwargs: Mapping[str, _InputArgsType],
atol: Optional[float] = None,
rtol: Optional[float] = None,
has_mutation: bool = False,
):
if has_mutation:
ref_model = _try_clone_model(model)
ref_input_args, ref_input_kwargs = _try_clone_inputs(input_args, input_kwargs)
else:
ref_model = model
ref_input_args = input_args
ref_input_kwargs = input_kwargs
# NOTE: ONNXProgram holds a reference (not copy) to the original ref_model, including its state_dict.
# Thus, ONNXProgram() must run before ref_model() to prevent ref_model.forward() from changing the state_dict.
# Otherwise, the ref_model can change buffers on state_dict which would be used by ONNXProgram.__call__()
# NOTE: `model_with_state_dict=ref_model` is specified to cover runs with FakeTensor support
ort_outputs = onnx_program(*input_args, **input_kwargs)
ref_outputs = ref_model(*ref_input_args, **ref_input_kwargs)
ref_outputs = onnx_program.adapt_torch_outputs_to_onnx(ref_outputs)
if len(ref_outputs) != len(ort_outputs):
raise AssertionError(
f"Expected {len(ref_outputs)} outputs, got {len(ort_outputs)}"
)
for ref_output, ort_output in zip(ref_outputs, ort_outputs):
torch.testing.assert_close(
ref_output, torch.tensor(ort_output), rtol=rtol, atol=atol
)
# The min onnx opset version to test for
MIN_ONNX_OPSET_VERSION = 9
# The max onnx opset version to test for
MAX_ONNX_OPSET_VERSION = _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET
TESTED_OPSETS = range(MIN_ONNX_OPSET_VERSION, MAX_ONNX_OPSET_VERSION + 1)
# The min onnx opset version to test for
FX_MIN_ONNX_OPSET_VERSION = 18
# The max onnx opset version to test for
FX_MAX_ONNX_OPSET_VERSION = 18
FX_TESTED_OPSETS = range(FX_MIN_ONNX_OPSET_VERSION, FX_MAX_ONNX_OPSET_VERSION + 1)
BOOL_TYPES = (torch.bool,)
INT_TYPES = (
# torch.int8,
# torch.int16,
torch.int32,
torch.int64,
# torch.uint8,
)
QINT_TYPES = (
torch.qint8,
torch.quint8,
)
FLOAT_TYPES = (
torch.float16,
torch.float32,
# torch.float64, ORT doesn't support
)
COMPLEX_TYPES = (
# torch.complex32, NOTE: torch.complex32 is experimental in torch
torch.complex64,
# torch.complex128, ORT doesn't support
)
TESTED_DTYPES = (
# Boolean
torch.bool,
# Integers
*INT_TYPES,
# Floating types
*FLOAT_TYPES,
# Complex types
*COMPLEX_TYPES,
)
@dataclasses.dataclass
class DecorateMeta:
"""Information about a test case to skip or xfail.
Adapted from functorch: functorch/test/common_utils.py
Attributes:
op_name: The name of the operator.
variant_name: The name of the OpInfo variant.
decorator: The decorator to apply to the test case.
opsets: The opsets to apply the decorator to.
dtypes: The dtypes to apply the decorator to.
reason: The reason for skipping.
test_behavior: The behavior of the test case. [skip or xfail]
matcher: The matcher to apply to the test case.
enabled_if: Whether to enable test behavior. Usually used on onnx/ort version control
model_type: The type of the torch model. Defaults to None.
"""
op_name: str
variant_name: str
decorator: Callable
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]]
dtypes: Optional[Collection[torch.dtype]]
reason: str
test_behavior: str
matcher: Optional[Callable[[Any], bool]] = None
enabled_if: bool = True
model_type: Optional[pytorch_test_common.TorchModelType] = None
def contains_opset(self, opset: int) -> bool:
if self.opsets is None:
return True
return any(
opset == opset_spec if isinstance(opset_spec, int) else opset_spec(opset)
for opset_spec in self.opsets
)
def xfail(
op_name: str,
variant_name: str = "",
*,
reason: str,
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None,
dtypes: Optional[Collection[torch.dtype]] = None,
matcher: Optional[Callable[[Any], bool]] = None,
enabled_if: bool = True,
model_type: Optional[pytorch_test_common.TorchModelType] = None,
):
"""Expects a OpInfo test to fail.
Args:
op_name: The name of the operator.
variant_name: The name of the variant.
opsets: The opsets to expect the failure. e.g. [9, 10] or [opsets_before(11)]
dtypes: The dtypes to expect the failure.
reason: The reason for the failure.
matcher: A function that matches the test sample input. It is used only when
xfail is in the SKIP_XFAIL_SUBTESTS list.
enabled_if: Whether to enable xfail. Usually used on onnx/ort version control
model_type: The type of the torch model. Defaults to None.
"""
return DecorateMeta(
op_name=op_name,
variant_name=variant_name,
decorator=unittest.expectedFailure,
opsets=opsets,
dtypes=dtypes,
enabled_if=enabled_if,
matcher=matcher,
reason=reason,
test_behavior="xfail",
model_type=model_type,
)
def skip(
op_name: str,
variant_name: str = "",
*,
reason: str,
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None,
dtypes: Optional[Collection[torch.dtype]] = None,
matcher: Optional[Callable[[Any], Any]] = None,
enabled_if: bool = True,
model_type: Optional[pytorch_test_common.TorchModelType] = None,
):
"""Skips a test case in OpInfo that we don't care about.
Likely because ONNX does not support the use case or it is by design.
Args:
op_name: The name of the operator.
variant_name: The name of the variant.
opsets: The opsets to expect the failure. e.g. [9, 10] or [opsets_before(11)]
dtypes: The dtypes to expect the failure.
reason: The reason for the failure.
matcher: A function that matches the test sample input. It is used only when
skip is in the SKIP_XFAIL_SUBTESTS list.
enabled_if: Whether to enable skip. Usually used on onnx/ort version control
model_type: The type of the torch model. Defaults to None.
"""
return DecorateMeta(
op_name=op_name,
variant_name=variant_name,
decorator=unittest.skip(f"Skip: {reason}"),
opsets=opsets,
dtypes=dtypes,
reason=reason,
matcher=matcher,
enabled_if=enabled_if,
test_behavior="skip",
model_type=model_type,
)
def skip_slow(
op_name: str,
variant_name: str = "",
*,
reason: str,
opsets: Optional[Collection[Union[int, Callable[[int], bool]]]] = None,
dtypes: Optional[Collection[torch.dtype]] = None,
matcher: Optional[Callable[[Any], Any]] = None,
model_type: Optional[pytorch_test_common.TorchModelType] = None,
):
"""Skips a test case in OpInfo that is too slow.
It needs further investigation to understand why it is slow.
Args:
op_name: The name of the operator.
variant_name: The name of the variant.
opsets: The opsets to expect the failure. e.g. [9, 10] or [opsets_before(11)]
dtypes: The dtypes to expect the failure.
reason: The reason for the failure.
matcher: A function that matches the test sample input. It is used only when
skip is in the SKIP_XFAIL_SUBTESTS list.
model_type: The type of the torch model. Defaults to None.
"""
return DecorateMeta(
op_name=op_name,
variant_name=variant_name,
decorator=common_utils.slowTest,
opsets=opsets,
dtypes=dtypes,
reason=reason,
matcher=matcher,
enabled_if=not common_utils.TEST_WITH_SLOW,
test_behavior="skip",
model_type=model_type,
)
def add_decorate_info(
all_opinfos: Sequence[opinfo_core.OpInfo],
test_class_name: str,
base_test_name: str,
opset: int,
skip_or_xfails: Iterable[DecorateMeta],
):
"""Decorates OpInfo tests with decorators based on the skip_or_xfails list.
Args:
all_opinfos: All OpInfos.
test_class_name: The name of the test class.
base_test_name: The name of the test method.
opset: The opset to decorate for.
skip_or_xfails: DecorateMeta's.
"""
ops_mapping = {(info.name, info.variant_test_name): info for info in all_opinfos}
for decorate_meta in skip_or_xfails:
if not decorate_meta.contains_opset(opset):
# Skip does not apply to this opset
continue
opinfo = ops_mapping.get((decorate_meta.op_name, decorate_meta.variant_name))
assert (
opinfo is not None
), f"Couldn't find OpInfo for {decorate_meta}. Did you need to specify variant_name?"
assert decorate_meta.model_type is None, (
f"Tested op: {decorate_meta.op_name} in wrong position! "
"If model_type needs to be specified, it should be "
"put under SKIP_XFAIL_SUBTESTS_WITH_MATCHER_AND_MODEL_TYPE."
)
decorators = list(opinfo.decorators)
new_decorator = opinfo_core.DecorateInfo(
decorate_meta.decorator,
test_class_name,
base_test_name,
dtypes=decorate_meta.dtypes,
active_if=decorate_meta.enabled_if,
)
decorators.append(new_decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
def opsets_before(opset: int) -> Callable[[int], bool]:
"""Returns a comparison function that decides if the given opset is before the specified."""
def compare(other_opset: int):
return other_opset < opset
return compare
def opsets_after(opset: int) -> Callable[[int], bool]:
"""Returns a comparison function that decides if the given opset is after the specified."""
def compare(other_opset: int):
return other_opset > opset
return compare
def reason_onnx_script_does_not_support(
operator: str, dtypes: Optional[Sequence[str]] = None
) -> str:
"""Formats the reason: ONNX script doesn't support the given dtypes."""
return f"{operator} on {dtypes or 'dtypes'} not supported by ONNX script"
def reason_onnx_runtime_does_not_support(
operator: str, dtypes: Optional[Sequence[str]] = None
) -> str:
"""Formats the reason: ONNX Runtime doesn't support the given dtypes."""
return f"{operator} on {dtypes or 'dtypes'} not supported by ONNX Runtime"
def reason_onnx_does_not_support(
operator: str, dtypes: Optional[Sequence[str]] = None
) -> str:
"""Formats the reason: ONNX doesn't support the given dtypes."""
return f"{operator} on {dtypes or 'certain dtypes'} not supported by the ONNX Spec"
def reason_dynamo_does_not_support(
operator: str, dtypes: Optional[Sequence[str]] = None
) -> str:
"""Formats the reason: Dynamo doesn't support the given dtypes."""
return (
f"{operator} on {dtypes or 'certain dtypes'} not supported by the Dynamo Spec"
)
def reason_jit_tracer_error(info: str) -> str:
"""Formats the reason: JIT tracer errors."""
return f"JIT tracer error on {info}"
def reason_flaky() -> str:
"""Formats the reason: test is flaky."""
return "flaky test"
@contextlib.contextmanager
def normal_xfail_skip_test_behaviors(
test_behavior: Optional[str] = None, reason: Optional[str] = None
):
"""This context manager is used to handle the different behaviors of xfail and skip.
Args:
test_behavior (optional[str]): From DecorateMeta name, can be 'skip', 'xfail', or None.
reason (optional[str]): The reason for the failure or skip.
Raises:
e: Any exception raised by the test case if it's not an expected failure.
"""
# We need to skip as soon as possible, as SegFault might also be a case.
if test_behavior == "skip":
pytest.skip(reason=reason)
try:
yield
# We could use `except (AssertionError, RuntimeError, ...) as e:`, but it needs
# to go over all test cases to find the right exception type.
except Exception as e: # pylint: disable=broad-exception-caught
if test_behavior is None:
raise e
if test_behavior == "xfail":
pytest.xfail(reason=reason)
else:
if test_behavior == "xfail":
pytest.fail("Test unexpectedly passed")