-
Notifications
You must be signed in to change notification settings - Fork 19
/
epiktimer.pas
816 lines (689 loc) · 28.9 KB
/
epiktimer.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
unit EpikTimer;
{ Name: EpikTimer
Description: Precision timer/stopwatch component for Lazarus/FPC
Author: Tom Lisjac <[email protected]>
Started on: June 24, 2003
Features:
Dual selectable timebases: Default:System (uSec timeofday or "now" in Win32)
Optional: Pentium Time Stamp Counter.
Default timebase should work on most Unix systems of any architecture.
Timebase correlation locks time stamp counter accuracy to system clock.
Timers can be started, stopped, paused and resumed.
Unlimited number of timers can be implemented with one component.
Low resources required: 25 bytes per timer; No CPU overhead.
Internal call overhead compensation.
System sleep function
Designed to support multiple operating systems and Architectures
Designed to support other hardware tick sources
Credits: Thanks to Martin Waldenburg for a lot of great ideas for using
the Pentium's RDTSC instruction in wmFastTime and QwmFastTime.
}
{ Copyright (C) 2003-2014 by Tom Lisjac <[email protected]>,
Felipe Monteiro de Carvalho and Marcel Minderhoud
This library is licensed on the same Modified LGPL as Free Pascal RTL and LCL are
Please contact the author if you'd like to use this component but the Modified LGPL
doesn't work with your project licensing.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.
Contributor(s):
* Felipe Monteiro de Carvalho ([email protected])
* Marcel Minderhoud
* Graeme Geldenhuys <[email protected]>
}
{
Known Issues
- If system doesn't have microsecond system clock resolution, the component
falls back to a single gated measurement of the hardware tick frequency via
nanosleep. This usually results in poor absolute accuracy due large amounts
of jitter in nanosleep... but for typical short term measurements, this
shouldn't be a problem.
}
{$IFDEF FPC}
{$MODE DELPHI}{$H+}
{$ENDIF}
{$IFNDEF FPC}
{$DEFINE Windows}
{$ENDIF}
{$IFDEF Win32}
{$DEFINE Windows}
{$ENDIF}
interface
uses
{$IFDEF Windows}
Windows, MMSystem,
{$ELSE}
unix, unixutil, baseunix,
{$IFDEF LINUX}
Linux, // for clock_gettime() access
{$ENDIF}
{$IFDEF FreeBSD}
FreeBSD, // for clock_gettime() access
{$ENDIF}
{$ENDIF}
Classes, SysUtils, dateutils;
Const
DefaultSystemTicksPerSecond = 1000000; //Divisor for microsecond resolution
{ HW Tick frequency falls back to gated measurement if the initial system
clock measurement is outside this range plus or minus.}
SystemTicksNormalRangeLimit = 100000;
type
TickType = Int64; // Global declaration for all tick processing routines
FormatPrecision = 1..12; // Number of decimal places in elapsed text format
// Component powers up in System mode to provide some cross-platform safety.
TickSources = (SystemTimebase, HardwareTimebase); // add others if desired
(* * * * * * * * * * * Timebase declarations * * * * * * * * * * *)
{ There are two timebases currently implemented in this component but others
can be added by declaring them as "TickSources", adding a TimebaseData
variable to the Private area of TEpikTimer and providing a "Ticks" routine
that returns the current counter value.
Timebases are "calibrated" during initialization by taking samples of the
execution times of the SystemSleep and Ticks functions measured with in the
tick period of the selected timebase. At runtime, these values are retrieved
and used to remove the call overhead to the best degree possible.
System latency is always present and contributes "jitter" to the edges of
the sample measurements. This is especially true if a microsecond system
clock isn't detected on the host system and a fallback gated measurement
(based on nanosleep in Linux and sleep in Win32) is used to determine the
timebase frequency. This is sufficient for short term measurements where
high resolution comparisons are desired... but over a long measurement
period, the hardware and system wall clock will diverge significantly.
If a microsecond system clock is found, timebase correlation is used to
synchronize the hardware counter and system clock. This is described below.
}
TickCallFunc = function: Ticktype; // Ticks interface function
// Contains timebase overhead compensation factors in ticks for each timebase
TimebaseCalibrationParameters = record
FreqCalibrated: Boolean; // Indicates that the tickfrequency has been calibrated
OverheadCalibrated: Boolean; // Indicates that all call overheads have been calibrated
TicksIterations: Integer; // number of iterations to use when measuring ticks overhead
SleepIterations: Integer; // number of iterations to use when measuring SystemSleep overhead
FreqIterations: Integer; // number of iterations to use when measuring ticks frequency
FrequencyGateTimeMS: Integer; // gate time to use when measuring ticks frequency
end;
// This record defines the Timebase context
TimebaseData = record
CalibrationParms: TimebaseCalibrationParameters; // Calibration data for this timebase
TicksFrequency: TickType; // Tick frequency of this timebase
TicksOverhead: Ticktype; // Ticks call overhead in TicksFrequency for this timebase
SleepOverhead: Ticktype; // SystemSleep all overhead in TicksFrequency for this timebase
Ticks: TickCallFunc; // all methods get their ticks from this function when selected
end;
TimeBaseSelector = ^TimebaseData;
(* * * * * * * * * * * Timebase Correlation * * * * * * * * * * *)
{ The TimeBaseCorrelation record stores snapshot samples of both the system
ticks (the source of known accuracy) and the hardware tick source (the
source of high measurement resolution). An initial sample is taken at power
up. The CorrelationMode property sets where and when updates are acquired.
When an update snapshot is acquired, the differences between it and the
startup value can be used to calculate the hardware clock frequency with
high precision from the accuracy of the accumulated system clocks. The
longer time that elapses between startup and a call to "CorrelateTimebases",
the better the accuracy will be. On a 1.6 Ghz P4, it only takes a few
seconds to achieve measurement certainty down to a few Hertz.
Of course this system is only as good as your system clock accuracy, so
it's a good idea to periodically sync it with NTP or against another source
of known accuracy if you want to maximize the long term of the timers. }
TimebaseCorrelationData = record
SystemTicks: TickType;
HWTicks: TickType;
end;
// If the Correlation property is set to automatic, an update sample is taken
// anytime the user calls Start or Elapsed. If in manual, the correlation
// update is only done when "CorrelateTimebases" is called. Doing updates
// with every call adds a small amount of overhead... and after the first few
// minutes of operation, there won't be very much correcting to do!
CorrelationModes=(Manual, OnTimebaseSelect, OnGetElapsed);
(* * * * * * * * * * * Timer Data record structure * * * * * * * * * * *)
// This is the timer data context. There is an internal declaration of this
// record and overloaded methods if you only want to use the component for a
// single timer... or you can declare multiple TimerData records in your
// program and create as many instances as you want with only a single
// component on the form. See the "Stopwatch" methods in the TEpikTimer class.
// Each timers points to the timebase that started it... so you can mix system
// and hardware timers in the same application.
TimerData = record
Running:Boolean; // Timer is currently running
TimebaseUsed:TimeBaseSelector; // keeps timer aligned with the source that started it.
StartTime:TickType; // Ticks sample when timer was started
TotalTicks:TickType; // Total ticks... for snapshotting and pausing
end;
TEpikTimer= class(TComponent)
private
BuiltInTimer:TimerData; // Used to provide a single built-in timer;
FHWTickSupportAvailable:Boolean; // True if hardware tick support is available
FHWCapabilityDataAvailable:Boolean; // True if hardware tick support is available
FHWTicks:TimeBaseData; // The hardware timebase
FSystemTicks:TimeBaseData; // The system timebase
FSelectedTimebase:TimeBaseSelector; // Pointer to selected database
FTimeBaseSource: TickSources; // use hardware or system timebase
FWantDays: Boolean; // true if days are to be displayed in string returns
FWantMS: Boolean; // True to display milliseconds in string formatted calls
FSPrecision: FormatPrecision; // number of digits to display in string calls
FMicrosecondSystemClockAvailable:Boolean; // true if system has microsecond clock
StartupCorrelationSample:TimebaseCorrelationData; // Starting ticks correlation snapshot
UpdatedCorrelationSample:TimebaseCorrelationData; // Snapshot of last correlation sample
FCorrelationMode: CorrelationModes; // mode to control when correlation updates are performed
protected
function GetSelectedTimebase: TimebaseData;
procedure SetSelectedTimebase(const AValue: TimebaseData);
procedure SetTimebaseSource(const AValue: TickSources); //setter for TB
Procedure GetCorrelationSample(Var CorrelationData:TimeBaseCorrelationData);
public
{ Stopwatch emulation routines
These routines behave exactly like a conventional stopwatch with start,
stop, elapsed (lap) and clear methods. The timers can be started,
stopped and resumed. The Elapsed routines provide a "lap" time analog.
The methods are overloaded to make it easy to simply use the component's
BuiltInTimer as a single timer... or to declare your own TimerData records
in order to implement unlimited numbers of timers using a single component
on the form. The timers are very resource efficient because they consume
no CPU overhead and only require about 25 bytes of memory.
}
// Stops and resets the timer
procedure Clear; overload;// Call this routine to use the built-in timer record
procedure Clear(Var T:TimerData); overload; // pass your TimerData record to this one
//Start or resume a stopped timer
procedure Start; overload;
procedure Start(Var T:TimerData); overload;
//Stop or pause a timer
procedure Stop; overload;
procedure Stop(Var T:TimerData); overload;
//Return elapsed time in seconds as an extended type
function Elapsed:Extended; overload;
function Elapsed(var T: TimerData):Extended; overload;
//Return a string in Day:Hour:Minute:Second format. Milliseconds can be
//optionally appended via the WantMilliseconds property
function ElapsedDHMS:String; overload;
function ElapsedDHMS(var T: TimerData):String; overload;
//Return a string in the format of seconds.milliseconds
function ElapsedStr:String; overload;
function ElapsedStr(var T:TimerData):String; overload;
function WallClockTime:String; // Return time of day string from system time
//Overhead compensated system sleep to provide a best possible precision delay
function SystemSleep(Milliseconds: Integer):integer; Virtual;
//Diagnostic taps for development and fine grained timebase adjustment
property HWTimebase: TimeBaseData read FHWTicks write FHWTicks; // The hardware timebase
property SysTimebase: TimebaseData read FSystemTicks write FSystemTicks;
function GetHardwareTicks:TickType; // return raw tick value from hardware source
function GetSystemTicks:Ticktype; // Return system tick value(in microseconds of Epoch time)
function GetTimebaseCorrelation:TickType;
function CalibrateCallOverheads(Var TimeBase:TimebaseData) : Integer; Virtual;
function CalibrateTickFrequency(Var TimeBase:TimebaseData): Integer; Virtual;
property MicrosecondSystemClockAvailable:Boolean read FMicrosecondSystemClockAvailable;
property SelectedTimebase:TimebaseSelector read FSelectedTimebase write FSelectedTimebase;
property HWTickSupportAvailable:Boolean read FHWTickSupportAvailable;
property HWCapabilityDataAvailable:Boolean read FHWCapabilityDataAvailable;
procedure CorrelateTimebases; // Manually call to do timebase correlation snapshot and update
constructor Create(AOwner:TComponent); Override;
destructor Destroy; Override;
Published
property StringPrecision: FormatPrecision read FSPrecision write FSPrecision;
property WantMilliseconds: Boolean read FWantMS write FWantMS default True;
property WantDays: Boolean read FWantDays write FWantDays default False;
property TimebaseSource: TickSources read FTimeBaseSource write SetTimebaseSource;
property CorrelationMode:CorrelationModes read FCorrelationMode write FCorrelationMode;
end;
implementation
(* * * * * * * * * * * * * * Timebase Section * * * * * * * * * * * * *)
{
There are two tick sources defined in this section. The first uses a hardware
source which, in this case, is the Pentium's internal 64 Time Stamp Counter.
The second source (the default) uses the given environment's most precision
"timeofday" system call so it can work across OS platforms and architectures.
The hardware timer's accuracy depends on the frequency of the timebase tick
source that drives it... in other words, how many of the timebase's ticks
there are in a second. This frequency is measured by capturing a sample of the
timebase ticks for a known period against a source of known accuracy. There
are two ways to do this.
The first is to capture a large sample of ticks from both the unknown and
known timing sources. Then the frequency of the unknown tick stream can be
calculated by: UnknownSampleTicks / (KnownSampleTicks / KnownTickFrequency).
Over a short period of time, this can provide a precise synchronization
mechanism that effectively locks the measurements taken with the high
resolution source to the known accuracy of the system clock.
The first method depends on the existance of an accurate system time source of
microsecond resolution. If the host system doesn't provide this, the second
fallback method is to gate the unknown tick stream by a known time. This isn't
as good because it usually involves calling a system "delay" routine that
usually has a lot of overhead "jitter" and non-deterministic behavior. This
approach is usable, however, for short term, high resolution comparisons where
absolute accuracy isn't important.
}
const
NanoPerSec = 1000000000; // 1 billionth of a second
NanoPerMilli = 1000000; // 1 millionth of a millisecond
MilliPerSec = 1000;
USecPerSec = 1000000; // Microsecond. 1 millionth of a second
(* * * * * * * * Start of i386 Hardware specific code * * * * * * *)
{$IFDEF CPUI386}
{ Some references for this section can be found at:
http://www.sandpile.org/ia32/cpuid.htm
http://www.sandpile.org/ia32/opc_2.htm
http://www.sandpile.org/ia32/msr.htm
}
// Pentium specific... push and pop the flags and check for CPUID availability
function HasHardwareCapabilityData: Boolean;
begin
asm
PUSHFD
POP EAX
MOV EDX,EAX
XOR EAX,$200000
PUSH EAX
POPFD
PUSHFD
POP EAX
XOR EAX,EDX
JZ @EXIT
MOV AL,TRUE
@EXIT:
end;
end;
function HasHardwareTickCounter: Boolean;
var FeatureFlags: Longword;
begin
FeatureFlags:=0;
asm
PUSH EBX
XOR EAX,EAX
DW $A20F
POP EBX
CMP EAX,1
JL @EXIT
XOR EAX,EAX
MOV EAX,1
PUSH EBX
DW $A20F
MOV FEATUREFLAGS,EDX
POP EBX
@EXIT:
end;
Result := (FeatureFlags and $10) <> 0;
end;
// Execute the Pentium's RDTSC instruction to access the counter value.
function HardwareTicks: TickType; assembler; asm DW 0310FH end;
(* * * * * * * * End of i386 Hardware specific code * * * * * * *)
// These are here for architectures that don't have a precision hardware
// timing source. They'll return zeros for overhead values. The timers
// will work but there won't be any error compensation for long
// term accuracy.
{$ELSE} // add other architectures and hardware specific tick sources here
function HasHardwareCapabilityData: Boolean; begin Result:=False end;
function HasHardwareTickCounter: Boolean; begin Result:=false end;
function HardwareTicks:TickType; begin result:=0 end;
{$ENDIF}
function NullHardwareTicks:TickType; begin Result:=0 end;
// Return microsecond normalized time source for a given platform.
// This should be sync'able to an external time standard (via NTP, for example).
function SystemTicks: TickType;
{$IFDEF WINDOWS}
begin
QueryPerformanceCounter(Result);
{$ELSE}
{$IF defined(LINUX) or defined(FreeBSD)}
// This is essentially the same as FPC 3.0.4's GetTickCount64() call
function _GetTickCount: QWord;
var
ts: TTimeSpec;
t: timeval;
begin
// use the Posix clock_gettime() call
if clock_gettime(CLOCK_MONOTONIC, @ts)=0 then
begin
Result := (TickType(ts.tv_sec) * MilliPerSec) + (ts.tv_nsec div NanoPerMilli);
Exit;
end;
// Use the FPC fallback
fpgettimeofday(@t,nil);
Result := (TickType(t.tv_sec) * MilliPerSec) + (t.tv_usec div 1000 { microsecond to millisecond });
end;
begin
Result := _GetTickCount;
{$ELSE}
Result := GetTickCount64;
{$ENDIF}
{$ENDIF}
end;
function TEpikTimer.SystemSleep(Milliseconds: Integer): integer;
begin
Sleep(Milliseconds);
Result := 0;
end;
function TEpikTimer.GetHardwareTicks: TickType;
begin
Result:=FHWTicks.Ticks();
end;
function TEpikTimer.GetSystemTicks: Ticktype;
begin
Result:=FSystemTicks.Ticks();
end;
procedure TEpikTimer.SetTimebaseSource(const AValue: TickSources);
procedure UseSystemTimer;
begin
FTimeBaseSource := SystemTimebase;
SelectedTimebase := @FSystemTicks;
end;
begin
case AValue of
HardwareTimebase:
try
if HWTickSupportAvailable then
begin
SelectedTimebase:=@FHWTicks;
FTimeBaseSource:=HardwareTimebase;
If CorrelationMode<>Manual then CorrelateTimebases
end
except // If HW init fails, fall back to system tick source
UseSystemTimer
end;
SystemTimeBase: UseSystemTimer
end
end;
function TEpikTimer.GetSelectedTimebase: TimebaseData;
begin
Result := FSelectedTimebase^;
end;
procedure TEpikTimer.SetSelectedTimebase(const AValue: TimebaseData);
begin
FSelectedTimebase^ := AValue;
end;
(* * * * * * * * * * Time measurement core routines * * * * * * * * * *)
procedure TEpikTimer.Clear(var T: TimerData);
begin
with T do
begin
Running:=False; StartTime:=0; TotalTicks:=0; TimeBaseUsed:=FSelectedTimebase
end;
end;
procedure TEpikTimer.Start(var T: TimerData);
begin
if not T.running then
With FSelectedTimebase^ do
begin
T.StartTime:=Ticks()-TicksOverhead;
T.TimebaseUsed:=FSelectedTimebase;
T.Running:=True
end
end;
procedure TEpikTimer.Stop(var T: TimerData);
Var CurTicks:TickType;
Begin
if T.Running then
With T.TimebaseUsed^ do
Begin
CurTicks:=Ticks()-TicksOverhead; // Back out the call overhead
T.TotalTicks:=(CurTicks - T.Starttime)+T.TotalTicks; T.Running:=false
end
end;
function TEpikTimer.Elapsed(var T: TimerData): Extended;
var
CurTicks: TickType;
begin
With T.TimebaseUsed^ do
if T.Running then
Begin
CurTicks:=Ticks()-TicksOverhead; // Back out the call overhead
If CorrelationMode>OnTimebaseSelect then CorrelateTimebases;
Result := ((CurTicks - T.Starttime)+T.TotalTicks) / TicksFrequency
End
Else Result := T.TotalTicks / TicksFrequency;
end;
(* * * * * * * * * * Output formatting routines * * * * * * * * * *)
function TEpikTimer.ElapsedDHMS(var T: TimerData): String;
var
Tmp, MS: extended;
D, H, M, S: Integer;
P, SM: string;
begin
Tmp := Elapsed(T);
P := inttostr(FSPrecision);
MS := frac(Tmp); SM := format('%0.'+P+'f',[MS]); delete(SM,1,1);
D := trunc(Tmp / 86400); Tmp := Trunc(tmp) mod 86400;
H := trunc(Tmp / 3600); Tmp := Trunc(Tmp) mod 3600;
M := Trunc(Tmp / 60); S := (trunc(Tmp) mod 60);
if FWantDays then
Result := format('%2.3d:%2.2d:%2.2d:%2.2d',[D,H,M,S])
else
Result := format('%2.2d:%2.2d:%2.2d',[H,M,S]);
if FWantMS then
Result := Result+SM;
end;
function TEpikTimer.ElapsedStr(var T: TimerData): String;
begin
Result := format('%.'+inttostr(FSPrecision)+'f',[Elapsed(T)]);
end;
function TEpikTimer.WallClockTime: String;
var
Y, D, M, hour, min, sec, ms, us: Word;
{$IFNDEF Windows}
t: timeval;
{$ENDIF}
begin
{$IFDEF Windows}
DecodeDatetime(Now, Y, D, M, Hour, min, Sec, ms);
us:=0;
{$ELSE}
// "Now" doesn't report milliseconds on Linux... appears to be broken.
// I opted for this approach which also provides microsecond precision.
fpgettimeofday(@t,nil);
EpochToLocal(t.tv_sec, Y, M, D, hour, min, sec);
ms:=t.tv_usec div MilliPerSec;
us:=t.tv_usec mod MilliPerSec;
{$ENDIF}
Result:='';
If FWantDays then
Result := Format('%4.4d/%2.2d/%2.2d-',[Y,M,D]);
Result := Result + Format('%2.2d:%2.2d:%2.2d',[hour,min,sec]);
If FWantMS then
Result := Result + Format('.%3.3d%3.3d',[ms,us])
end;
(* * * Overloaded methods to use the component's internal timer data * * *)
procedure TEpikTimer.Clear;
begin
Clear(BuiltInTimer);
end;
procedure TEpikTimer.Start;
begin
Start(BuiltInTimer);
end;
procedure TEpikTimer.Stop;
begin
Stop(BuiltInTimer);
end;
function TEpikTimer.Elapsed: Extended;
begin
Result := Elapsed(BuiltInTimer);
end;
function TEpikTimer.ElapsedStr: String;
begin
Result := ElapsedStr(BuiltInTimer);
end;
function TEpikTimer.ElapsedDHMS: String;
begin
Result := ElapsedDHMS(BuiltInTimer);
end;
(* * * * * * * * * * Timebase calibration section * * * * * * * * * *)
// Set up compensation for call overhead to the Ticks and SystemSleep functions.
// The Timebase record contains Calibration parameters to be used for each
// timebase source. These have to be unique as the output of this measurement
// is measured in "ticks"... which are different periods for each timebase.
function TEpikTimer.CalibrateCallOverheads(var TimeBase: TimebaseData): Integer;
var i:Integer; St,Fin,Total:TickType;
begin
with Timebase, Timebase.CalibrationParms do
begin
Total:=0; Result:=1;
for I:=1 to TicksIterations do // First get the base tick getting overhead
begin
St:=Ticks(); Fin:=Ticks();
Total:=Total+(Fin-St); // dump the first sample
end;
TicksOverhead:=Total div TicksIterations;
Total:=0;
For I:=1 to SleepIterations do
Begin
St:=Ticks();
if SystemSleep(0)<>0 then exit;
Fin:=Ticks();
Total:=Total+((Fin-St)-TicksOverhead);
End;
SleepOverhead:=Total div SleepIterations;
OverheadCalibrated:=True; Result:=0
End
end;
// CalibrateTickFrequency is a fallback in case a microsecond resolution system
// clock isn't found. It's still important because the long term accuracy of the
// timers will depend on the determination of the tick frequency... in other words,
// the number of ticks it takes to make a second. If this measurement isn't
// accurate, the counters will proportionately drift over time.
//
// The technique used here is to gate a sample of the tick stream with a known
// time reference which, in this case, is nanosleep. There is a *lot* of jitter
// in a nanosleep call so an attempt is made to compensate for some of it here.
function TEpikTimer.CalibrateTickFrequency(var TimeBase: TimebaseData): Integer;
var
i: Integer;
Total, SS, SE: TickType;
ElapsedTicks, SampleTime: Extended;
begin
With Timebase, Timebase.CalibrationParms do
Begin
Result:=1; //maintain unitialized default in case something goes wrong.
Total:=0;
For i:=1 to FreqIterations do
begin
SS:=Ticks();
SystemSleep(FrequencyGateTimeMS);
SE:=Ticks();
Total:=Total+((SE-SS)-(SleepOverhead+TicksOverhead))
End;
//doing the floating point conversion allows SampleTime parms of < 1 second
ElapsedTicks:=Total div FreqIterations;
SampleTime:=FrequencyGateTimeMS;
TicksFrequency:=Trunc( ElapsedTicks / (SampleTime / MilliPerSec));
FreqCalibrated:=True;
end;
end;
// Grab a snapshot of the system and hardware tick sources... as quickly as
// possible and with overhead compensation. These samples will be used to
// correct the accuracy of the hardware tick frequency source when precision
// long term measurements are desired.
procedure TEpikTimer.GetCorrelationSample(var CorrelationData: TimeBaseCorrelationData);
Var
TicksHW, TicksSys: TickType;
THW, TSYS: TickCallFunc;
begin
THW:=FHWTicks.Ticks; TSYS:=FSystemTicks.Ticks;
TicksHW:=THW(); TicksSys:=TSYS();
With CorrelationData do
Begin
SystemTicks:= TicksSys-FSystemTicks.TicksOverhead;
HWTicks:=TicksHW-FHWTicks.TicksOverhead;
End
end;
(* * * * * * * * * * Timebase correlation section * * * * * * * * * *)
{ Get another snapshot of the system and hardware tick sources and compute a
corrected value for the hardware frequency. In a short amount of time, the
microsecond system clock accumulates enough ticks to perform a *very*
accurate frequency measurement of the typically picosecond time stamp counter. }
function TEpikTimer.GetTimebaseCorrelation: TickType;
Var
HWDiff, SysDiff, Corrected: Extended;
begin
If HWtickSupportAvailable then
Begin
GetCorrelationSample(UpdatedCorrelationSample);
HWDiff:=UpdatedCorrelationSample.HWTicks-StartupCorrelationSample.HWTicks;
SysDiff:=UpdatedCorrelationSample.SystemTicks-StartupCorrelationSample.SystemTicks;
Corrected:=HWDiff / (SysDiff / DefaultSystemTicksPerSecond);
Result:=trunc(Corrected)
End
else result:=0
end;
{ If an accurate reference is available, update the TicksFrequency of the
hardware timebase. }
procedure TEpikTimer.CorrelateTimebases;
begin
If MicrosecondSystemClockAvailable and HWTickSupportAvailable then
FHWTicks.TicksFrequency:=GetTimebaseCorrelation
end;
(* * * * * * * * Initialization: Constructor and Destructor * * * * * * *)
constructor TEpikTimer.Create(AOwner: TComponent);
Procedure InitTimebases;
Begin
{ Tick frequency rates are different for the system and HW timebases so we
need to store calibration data in the period format of each one. }
FSystemTicks.Ticks:=@SystemTicks; // Point to Ticks routine
With FSystemTicks.CalibrationParms do
Begin
FreqCalibrated:=False;
OverheadCalibrated:=False;
TicksIterations:=5;
SleepIterations:=10;
FrequencyGateTimeMS:=100;
FreqIterations:=1;
End;
// Initialize the HW tick source data
FHWCapabilityDataAvailable:=False;
FHWTickSupportAvailable:=False;
FHWTicks.Ticks:=@NullHardwareTicks; // returns a zero if no HW support
FHWTicks.TicksFrequency:=1;
With FHWTicks.CalibrationParms do
Begin
FreqCalibrated:=False;
OverheadCalibrated:=False;
TicksIterations:=10;
SleepIterations:=20;
FrequencyGateTimeMS:=150;
FreqIterations:=1;
End;
if HasHardwareCapabilityData then
Begin
FHWCapabilityDataAvailable:=True;
If HasHardwareTickCounter then
Begin
FHWTicks.Ticks:=@HardwareTicks;
FHWTickSupportAvailable:=CalibrateCallOverheads(FHWTicks)=0
End
end;
CalibrateCallOverheads(FSystemTicks);
CalibrateTickFrequency(FSystemTicks);
// Overheads are set... get starting timestamps for long term calibration runs
GetCorrelationSample(StartupCorrelationSample);
With FSystemTicks do
If (TicksFrequency>(DefaultSystemTicksPerSecond-SystemTicksNormalRangeLimit)) and
(TicksFrequency<(DefaultSystemTicksPerSecond+SystemTicksNormalRangeLimit)) then
Begin // We've got a good microsecond system clock
FSystemTicks.TicksFrequency:=DefaultSystemTicksPerSecond; // assume it's pure
FMicrosecondSystemClockAvailable:=True;
If FHWTickSupportAvailable then
Begin
SystemSleep(FHWTicks.CalibrationParms.FrequencyGateTimeMS); // rough gate
CorrelateTimebases
End
end
else
Begin
FMicrosecondSystemClockAvailable:=False;
If FHWTickSupportAvailable then
CalibrateTickFrequency(FHWTicks) // sloppy but usable fallback calibration
End;
End;
begin
inherited Create(AOwner);
StringPrecision := 6;
FWantMS := True;
FWantDays := False;
InitTimebases;
CorrelationMode := OnTimebaseSelect;
// Default is the safe, cross-platform but less precise system timebase
TimebaseSource := SystemTimebase;
Clear(BuiltInTimer)
end;
destructor TEpikTimer.Destroy;
begin
inherited Destroy;
// here in case we need to clean something up in a later version
end;
end.