diff --git a/doc/cases.tex b/doc/cases.tex index db1dfb50..20a5c271 100644 --- a/doc/cases.tex +++ b/doc/cases.tex @@ -284,7 +284,7 @@ \subsubsection{Turbulence under breaking surface waves}\label{breaking_waves} \sect{sec:updategrid}. If you want to compare the computed profiles with the analytical solutions in \eq{power_law}, you'll need a specification of the parameter $K$. This parameter is computed in {\tt -k\_bc()} to be found in {\tt turbulence.F90}, where you can add a few +k\_bc()} to be found in {\tt turbulence.F90}, where you can add a few FORTRAN lines to write it out. \subsubsection{Some entrainment scenarios}\label{entrainment} diff --git a/doc/turbulenceIntro.tex b/doc/turbulenceIntro.tex index c097fe18..b3b72802 100644 --- a/doc/turbulenceIntro.tex +++ b/doc/turbulenceIntro.tex @@ -1027,7 +1027,7 @@ \subsection{Numerics} l$-equation and the $\epsilon$-equation (described in \sect{sec:lengthscaleeq} and \sect{sec:dissipationeq}), $Q$ would be proportional to $q/l$ and $\epsilon -/kĻ$, repsectively. +/k$, respectively. A straight-forward, explicit discretisation in time of \eq{eq:burchard11} can be written as