-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
69 lines (47 loc) · 1.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import PIL.Image as Image
import tensorflow as tf
import streamlit as st
from streamlit_extras.add_vertical_space import add_vertical_space
from warnings import filterwarnings
filterwarnings('ignore')
def streamlit_config():
# page configuration
st.set_page_config(page_title='Classification', layout='centered')
# page header transparent color
page_background_color = """
<style>
[data-testid="stHeader"]
{
background: rgba(0,0,0,0);
}
</style>
"""
st.markdown(page_background_color, unsafe_allow_html=True)
# title and position
st.markdown(f'<h1 style="text-align: center;">Potato Disease Classification</h1>',
unsafe_allow_html=True)
add_vertical_space(4)
# Streamlit Configuration Setup
streamlit_config()
def prediction(image_path, class_names=['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']):
img = Image.open(image_path)
img_resized = img.resize((256,256))
img_array = tf.keras.preprocessing.image.img_to_array(img_resized)
img_array = np.expand_dims(img_array, axis=0)
model = tf.keras.models.load_model(r'model\model.h5')
prediction = model.predict(img_array)
predicted_class = class_names[np.argmax(prediction)]
confidence = round(np.max(prediction)*100, 2)
add_vertical_space(1)
st.markdown(f'<h4 style="color: orange;">Predicted Class : {predicted_class}<br>Confident : {confidence}%</h3>',
unsafe_allow_html=True)
add_vertical_space(1)
st.image(img.resize((400,300)))
col1,col2,col3 = st.columns([0.1,0.9,0.1])
with col2:
input_image = st.file_uploader(label='Upload the Image', type=['jpg', 'jpeg', 'png'])
if input_image is not None:
col1,col2,col3 = st.columns([0.2,0.8,0.2])
with col2:
prediction(input_image)