-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
saturated_arithmetic.h
348 lines (313 loc) · 13.7 KB
/
saturated_arithmetic.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_UTIL_SATURATED_ARITHMETIC_H_
#define OR_TOOLS_UTIL_SATURATED_ARITHMETIC_H_
#include <cstdint>
#include <limits>
#include <type_traits>
#include "absl/base/casts.h"
#include "absl/log/check.h"
#include "ortools/base/types.h"
#include "ortools/util/bitset.h"
// This file contains implementations for saturated addition, subtraction and
// multiplication.
// Currently, there are three versions of the code.
// The code using the built-ins provided since GCC 5.0 now compiles really well
// with clang/LLVM on both x86_64 and ARM. It should therefore be the standard,
// but not for multiplication, see below.
//
// For example, on ARM, only 4 instructions are needed, two of which are
// additions that can be executed in parallel.
//
// On x86_64, we're keeping the code with inline assembly for GCC as GCC does
// manage to compile the code with built-ins properly.
// On x86_64, the product of two 64-bit registers is a 128-bit integer
// stored in two 64-bit registers. It's the carry flag that is set when the
// result exceeds 64 bits, not the overflow flag. Since the built-in uses the
// overflow flag, we have to resort on the assembly-based version of the code.
//
// Sadly, MSVC does not support the built-ins nor does it support inline
// assembly. We have to rely on the generic, C++ only version of the code which
// is much slower.
//
// TODO(user): make this implementation the default everywhere.
// TODO(user): investigate the code generated by MSVC.
namespace operations_research {
// Checks if x is equal to the min or the max value of an int64_t.
inline bool AtMinOrMaxInt64(int64_t x) {
return x == std::numeric_limits<int64_t>::min() ||
x == std::numeric_limits<int64_t>::max();
}
// Note(user): -kint64min != kint64max, but kint64max == ~kint64min.
inline int64_t CapOpp(int64_t v) { return v == kint64min ? ~v : -v; }
inline int64_t CapAbs(int64_t v) {
return v == kint64min ? std::numeric_limits<int64_t>::max()
: (v < 0 ? -v : v);
}
// ---------- Overflow utility functions ----------
// Implement two's complement addition and subtraction on int64s.
//
// The C and C++ standards specify that the overflow of signed integers is
// undefined. This is because of the different possible representations that may
// be used for signed integers (one's complement, two's complement, sign and
// magnitude). Such overflows are detected by Address Sanitizer with
// -fsanitize=signed-integer-overflow.
//
// Simple, portable overflow detection on current machines relies on
// these two functions. For example, if the sign of the sum of two positive
// integers is negative, there has been an overflow.
//
// Note that the static assert will break if the code is compiled on machines
// which do not use two's complement.
inline int64_t TwosComplementAddition(int64_t x, int64_t y) {
static_assert(static_cast<uint64_t>(-1LL) == ~0ULL,
"The target architecture does not use two's complement.");
return absl::bit_cast<int64_t>(static_cast<uint64_t>(x) +
static_cast<uint64_t>(y));
}
inline int64_t TwosComplementSubtraction(int64_t x, int64_t y) {
static_assert(static_cast<uint64_t>(-1LL) == ~0ULL,
"The target architecture does not use two's complement.");
return absl::bit_cast<int64_t>(static_cast<uint64_t>(x) -
static_cast<uint64_t>(y));
}
// Helper function that returns true if an overflow has occurred in computing
// sum = x + y. sum is expected to be computed elsewhere.
inline bool AddHadOverflow(int64_t x, int64_t y, int64_t sum) {
// Overflow cannot occur if operands have different signs.
// It can only occur if sign(x) == sign(y) and sign(sum) != sign(x),
// which is equivalent to: sign(x) != sign(sum) && sign(y) != sign(sum).
// This is captured when the expression below is negative.
DCHECK_EQ(sum, TwosComplementAddition(x, y));
return ((x ^ sum) & (y ^ sum)) < 0;
}
inline bool SubHadOverflow(int64_t x, int64_t y, int64_t diff) {
// This is the same reasoning as for AddHadOverflow. We have x = diff + y.
// The formula is the same, with 'x' and diff exchanged.
DCHECK_EQ(diff, TwosComplementSubtraction(x, y));
return AddHadOverflow(diff, y, x);
}
// A note on overflow treatment.
// kint64min and kint64max are treated as infinity.
// Thus if the computation overflows, the result is always kint64m(ax/in).
//
// Note(user): this is actually wrong: when computing A-B, if A is kint64max
// and B is finite, then A-B won't be kint64max: overflows aren't sticky.
// TODO(user): consider making some operations overflow-sticky, some others
// not, but make an explicit choice throughout.
inline bool AddOverflows(int64_t x, int64_t y) {
return AddHadOverflow(x, y, TwosComplementAddition(x, y));
}
inline int64_t SubOverflows(int64_t x, int64_t y) {
return SubHadOverflow(x, y, TwosComplementSubtraction(x, y));
}
// Performs *b += a and returns false iff the addition overflow or underflow.
// This function only works for typed integer type (IntType<>).
template <typename IntegerType>
bool SafeAddInto(IntegerType a, IntegerType* b) {
const int64_t x = a.value();
const int64_t y = b->value();
const int64_t sum = TwosComplementAddition(x, y);
if (AddHadOverflow(x, y, sum)) return false;
*b = sum;
return true;
}
// Returns kint64max if x >= 0 and kint64min if x < 0.
inline int64_t CapWithSignOf(int64_t x) {
// return kint64max if x >= 0 or kint64max + 1 (== kint64min) if x < 0.
return TwosComplementAddition(kint64max, static_cast<int64_t>(x < 0));
}
// The following implementations are here for GCC because it does not
// compiled the built-ins correctly. The code is either too long without
// branches or contains jumps. These implementations are probably optimal
// on x86_64.
#if defined(__GNUC__) && !defined(__clang_) && defined(__x86_64__)
inline int64_t CapAddAsm(int64_t x, int64_t y) {
const int64_t cap = CapWithSignOf(x);
int64_t result = x;
// clang-format off
asm volatile( // 'volatile': ask compiler optimizer "keep as is".
"\t" "addq %[y],%[result]"
"\n\t" "cmovoq %[cap],%[result]" // Conditional move if overflow.
: [result] "=r"(result) // Output
: "[result]" (result), [y] "r"(y), [cap] "r"(cap) // Input.
: "cc" /* Clobbered registers */ );
// clang-format on
return result;
}
inline int64_t CapSubAsm(int64_t x, int64_t y) {
const int64_t cap = CapWithSignOf(x);
int64_t result = x;
// clang-format off
asm volatile( // 'volatile': ask compiler optimizer "keep as is".
"\t" "subq %[y],%[result]"
"\n\t" "cmovoq %[cap],%[result]" // Conditional move if overflow.
: [result] "=r"(result) // Output
: "[result]" (result), [y] "r"(y), [cap] "r"(cap) // Input.
: "cc" /* Clobbered registers */ );
// clang-format on
return result;
}
// Note that on x86_64, we have to use this code because it's the carry flag
// that is set when the product of two 64-bit integers does not fit in 64-bit.
inline int64_t CapProdAsm(int64_t x, int64_t y) {
// cap = kint64max if x and y have the same sign, cap = kint64min
// otherwise.
const int64_t cap = CapWithSignOf(x ^ y);
int64_t result = x;
// Here, we use the fact that imul of two signed 64-integers returns a 128-bit
// result -- we care about the lower 64 bits. More importantly, imul also sets
// the carry flag if 64 bits were not enough.
// We therefore use cmovc to return cap if the carry was set.
// clang-format off
asm volatile( // 'volatile': ask compiler optimizer "keep as is".
"\n\t" "imulq %[y],%[result]"
"\n\t" "cmovcq %[cap],%[result]" // Conditional move if carry.
: [result] "=r"(result) // Output
: "[result]" (result), [y] "r"(y), [cap] "r"(cap) // Input.
: "cc" /* Clobbered registers */);
// clang-format on
return result;
}
#endif
// Simple implementations which use the built-ins provided by both GCC and
// clang. clang compiles to very good code for both x86_64 and ARM. This is the
// preferred implementation in general.
#if defined(__clang__)
inline int64_t CapAddBuiltIn(int64_t x, int64_t y) {
const int64_t cap = CapWithSignOf(x);
int64_t result;
const bool overflowed = __builtin_add_overflow(x, y, &result);
return overflowed ? cap : result;
}
inline int64_t CapSubBuiltIn(int64_t x, int64_t y) {
const int64_t cap = CapWithSignOf(x);
int64_t result;
const bool overflowed = __builtin_sub_overflow(x, y, &result);
return overflowed ? cap : result;
}
// As said above, this is useless on x86_64.
inline int64_t CapProdBuiltIn(int64_t x, int64_t y) {
const int64_t cap = CapWithSignOf(x ^ y);
int64_t result;
const bool overflowed = __builtin_mul_overflow(x, y, &result);
return overflowed ? cap : result;
}
#endif
// Generic implementations. They are very good for addition and subtraction,
// less so for multiplication.
inline int64_t CapAddGeneric(int64_t x, int64_t y) {
const int64_t result = TwosComplementAddition(x, y);
return AddHadOverflow(x, y, result) ? CapWithSignOf(x) : result;
}
inline int64_t CapSubGeneric(int64_t x, int64_t y) {
const int64_t result = TwosComplementSubtraction(x, y);
return SubHadOverflow(x, y, result) ? CapWithSignOf(x) : result;
}
namespace cap_prod_util {
// Returns an unsigned int equal to the absolute value of n, in a way that
// will not produce overflows.
inline uint64_t uint_abs(int64_t n) {
return n < 0 ? ~static_cast<uint64_t>(n) + 1 : static_cast<uint64_t>(n);
}
} // namespace cap_prod_util
// The generic algorithm computes a bound on the number of bits necessary to
// store the result. For this it uses the position of the most significant bits
// of each of the arguments.
// If the result needs at least 64 bits, then return a capped value.
// If the result needs at most 63 bits, then return the product.
// Otherwise, the result may use 63 or 64 bits: compute the product
// as a uint64_t, and cap it if necessary.
inline int64_t CapProdGeneric(int64_t x, int64_t y) {
const uint64_t a = cap_prod_util::uint_abs(x);
const uint64_t b = cap_prod_util::uint_abs(y);
// Let MSB(x) denote the most significant bit of x. We have:
// MSB(x) + MSB(y) <= MSB(x * y) <= MSB(x) + MSB(y) + 1
const int msb_sum =
MostSignificantBitPosition64(a) + MostSignificantBitPosition64(b);
const int kMaxBitIndexInInt64 = 63;
if (msb_sum <= kMaxBitIndexInInt64 - 2) return x * y;
// Catch a == 0 or b == 0 now, as MostSignificantBitPosition64(0) == 0.
// TODO(user): avoid this by writing function Log2(a) with Log2(0) == -1.
if (a == 0 || b == 0) return 0;
const int64_t cap = CapWithSignOf(x ^ y);
if (msb_sum >= kMaxBitIndexInInt64) return cap;
// The corner case is when msb_sum == 62, i.e. at least 63 bits will be
// needed to store the product. The following product will never overflow
// on uint64_t, since msb_sum == 62.
const uint64_t u_prod = a * b;
// The overflow cases are captured by one of the following conditions:
// (cap >= 0 && u_prod >= static_cast<uint64_t>(kint64max) or
// (cap < 0 && u_prod >= static_cast<uint64_t>(kint64min)).
// These can be optimized as follows (and if the condition is false, it is
// safe to compute x * y.
if (u_prod >= static_cast<uint64_t>(cap)) return cap;
const int64_t abs_result = absl::bit_cast<int64_t>(u_prod);
return cap < 0 ? -abs_result : abs_result;
}
// A generic, safer version of CapAdd() where we don't silently convert double
// or int32_t to int64_t. When the inputs are floating-point, uses '+', else
// uses CapAdd() for int64_t, and a (slow-ish) int32_t version for int.
template <typename T>
T CapOrFloatAdd(T x, T y);
inline int64_t CapAdd(int64_t x, int64_t y) {
#if defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)
return CapAddAsm(x, y);
#elif defined(__clang__)
return CapAddBuiltIn(x, y);
#else
return CapAddGeneric(x, y);
#endif
}
inline void CapAddTo(int64_t x, int64_t* y) { *y = CapAdd(*y, x); }
inline int64_t CapSub(int64_t x, int64_t y) {
#if defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)
return CapSubAsm(x, y);
#elif defined(__clang__)
return CapSubBuiltIn(x, y);
#else
return CapSubGeneric(x, y);
#endif
}
inline int64_t CapProd(int64_t x, int64_t y) {
#if defined(__GNUC__) && defined(__x86_64__)
// On x86_64, the product of two 64-bit registeres is a 128-bit integer,
// stored in two 64-bit registers. It's the carry flag that is set when the
// result exceeds 64 bits, not the overflow flag. We therefore have to resort
// to the assembly-based version of the code.
return CapProdAsm(x, y);
#elif defined(__clang__)
return CapProdBuiltIn(x, y);
#else
return CapProdGeneric(x, y);
#endif
}
template <typename T>
T CapOrFloatAdd(T x, T y) {
static_assert(std::is_floating_point_v<T> || std::is_integral_v<T>);
if constexpr (std::is_integral_v<T>) {
if constexpr (std::is_same_v<T, int64_t>) {
return CapAdd(x, y);
} else {
static_assert(
std::is_same_v<T, int32_t>,
"CapOrFloatAdd() on integers only works for int and int64_t");
const int64_t sum = int64_t{x} + y;
return sum > kint32max ? kint32max : sum < kint32min ? kint32min : sum;
}
} else {
return x + y;
}
}
} // namespace operations_research
#endif // OR_TOOLS_UTIL_SATURATED_ARITHMETIC_H_