-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
fp_utils.cc
262 lines (234 loc) · 9.72 KB
/
fp_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/util/fp_utils.h"
#include <limits.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <utility>
#include <vector>
#include "absl/base/casts.h"
#include "absl/base/internal/endian.h"
#include "absl/log/check.h"
#include "absl/types/span.h"
#include "ortools/util/bitset.h"
namespace operations_research {
namespace {
void ReorderAndCapTerms(double* min, double* max) {
if (*min > *max) std::swap(*min, *max);
if (*min > 0.0) *min = 0.0;
if (*max < 0.0) *max = 0.0;
}
template <bool use_bounds>
void ComputeScalingErrors(absl::Span<const double> input,
absl::Span<const double> lb,
absl::Span<const double> ub, double scaling_factor,
double* max_relative_coeff_error,
double* max_scaled_sum_error) {
double max_error = 0.0;
double min_error = 0.0;
*max_relative_coeff_error = 0.0;
const int size = input.size();
for (int i = 0; i < size; ++i) {
const double x = input[i];
if (x == 0.0) continue;
const double scaled = x * scaling_factor;
if (scaled == 0.0) {
*max_relative_coeff_error = std::numeric_limits<double>::infinity();
} else {
*max_relative_coeff_error = std::max(
*max_relative_coeff_error, std::abs(std::round(scaled) / scaled - 1));
}
const double error = std::round(scaled) - scaled;
const double error_lb = (use_bounds ? error * lb[i] : -error);
const double error_ub = (use_bounds ? error * ub[i] : error);
max_error += std::max(error_lb, error_ub);
min_error += std::min(error_lb, error_ub);
}
*max_scaled_sum_error = std::max(std::abs(max_error), std::abs(min_error));
}
template <bool use_bounds>
void GetBestScalingOfDoublesToInt64(absl::Span<const double> input,
absl::Span<const double> lb,
absl::Span<const double> ub,
int64_t max_absolute_sum,
double* scaling_factor) {
const double kInfinity = std::numeric_limits<double>::infinity();
// We start by initializing the returns value to the "error" state.
*scaling_factor = 0;
// Abort in the "error" state if max_absolute_sum doesn't make sense.
if (max_absolute_sum < 0) return;
// Our scaling scaling_factor will be 2^factor_exponent.
//
// TODO(user): Consider using a non-power of two factor if the error can't be
// zero? Note however that using power of two has the extra advantage that
// subsequent int64_t -> double -> scaled back to int64_t will loose no extra
// information.
int factor_exponent = 0;
uint64_t sum_min = 0; // negated.
uint64_t sum_max = 0;
bool recompute_sum = false;
bool is_first_value = true;
const int msb = MostSignificantBitPosition64(max_absolute_sum);
const int size = input.size();
for (int i = 0; i < size; ++i) {
const double x = input[i];
double min_term = use_bounds ? x * lb[i] : -x;
double max_term = use_bounds ? x * ub[i] : x;
ReorderAndCapTerms(&min_term, &max_term);
// If min_term or max_term is not finite, then abort in the "error" state.
if (!(min_term > -kInfinity && max_term < kInfinity)) return;
// A value of zero can just be skipped (and needs to because the code below
// doesn't handle it correctly).
if (min_term == 0.0 && max_term == 0.0) continue;
// Compute the greatest candidate such that
// round(fabs(c).2^candidate) <= max_absolute_sum.
const double c = std::max(-min_term, max_term);
int candidate = msb - ilogb(c);
if (candidate >= std::numeric_limits<double>::max_exponent) {
candidate = std::numeric_limits<double>::max_exponent - 1;
}
if (std::round(ldexp(std::abs(c), candidate)) > max_absolute_sum) {
--candidate;
}
DCHECK_LE(std::abs(static_cast<int64_t>(round(ldexp(c, candidate)))),
max_absolute_sum);
// Update factor_exponent which is the min of all the candidates.
if (is_first_value || candidate < factor_exponent) {
is_first_value = false;
factor_exponent = candidate;
recompute_sum = true;
} else {
// Update the sum of absolute values of the numbers seen so far.
sum_min -=
static_cast<int64_t>(std::round(ldexp(min_term, factor_exponent)));
sum_max +=
static_cast<int64_t>(std::round(ldexp(max_term, factor_exponent)));
if (sum_min > static_cast<uint64_t>(max_absolute_sum) ||
sum_max > static_cast<uint64_t>(max_absolute_sum)) {
factor_exponent--;
recompute_sum = true;
}
}
// TODO(user): This is not super efficient, but note that in practice we
// will only scan the vector of values about log(size) times. It is possible
// to maintain an upper bound on the abs_sum in linear time instead, but the
// code and corner cases are a lot more involved. Also, we currently only
// use this code in situations where its run-time is negligeable compared to
// the rest.
while (recompute_sum) {
sum_min = 0;
sum_max = 0;
for (int j = 0; j <= i; ++j) {
const double x = input[j];
double min_term = use_bounds ? x * lb[j] : -x;
double max_term = use_bounds ? x * ub[j] : x;
ReorderAndCapTerms(&min_term, &max_term);
sum_min -=
static_cast<int64_t>(std::round(ldexp(min_term, factor_exponent)));
sum_max +=
static_cast<int64_t>(std::round(ldexp(max_term, factor_exponent)));
}
if (sum_min > static_cast<uint64_t>(max_absolute_sum) ||
sum_max > static_cast<uint64_t>(max_absolute_sum)) {
factor_exponent--;
} else {
recompute_sum = false;
}
}
}
*scaling_factor = ldexp(1.0, factor_exponent);
}
} // namespace
void ComputeScalingErrors(absl::Span<const double> input,
absl::Span<const double> lb,
absl::Span<const double> ub, double scaling_factor,
double* max_relative_coeff_error,
double* max_scaled_sum_error) {
ComputeScalingErrors<true>(input, lb, ub, scaling_factor,
max_relative_coeff_error, max_scaled_sum_error);
}
double GetBestScalingOfDoublesToInt64(absl::Span<const double> input,
absl::Span<const double> lb,
absl::Span<const double> ub,
int64_t max_absolute_sum) {
double scaling_factor;
GetBestScalingOfDoublesToInt64<true>(input, lb, ub, max_absolute_sum,
&scaling_factor);
DCHECK(std::isfinite(scaling_factor));
return scaling_factor;
}
void GetBestScalingOfDoublesToInt64(absl::Span<const double> input,
int64_t max_absolute_sum,
double* scaling_factor,
double* max_relative_coeff_error) {
double max_scaled_sum_error;
GetBestScalingOfDoublesToInt64<false>(input, {}, {}, max_absolute_sum,
scaling_factor);
ComputeScalingErrors<false>(input, {}, {}, *scaling_factor,
max_relative_coeff_error, &max_scaled_sum_error);
DCHECK(std::isfinite(*scaling_factor));
}
int64_t ComputeGcdOfRoundedDoubles(absl::Span<const double> x,
double scaling_factor) {
DCHECK(std::isfinite(scaling_factor));
int64_t gcd = 0;
const int size = static_cast<int>(x.size());
for (int i = 0; i < size && gcd != 1; ++i) {
int64_t value = std::abs(std::round(x[i] * scaling_factor));
DCHECK_GE(value, 0);
if (value == 0) continue;
if (gcd == 0) {
gcd = value;
continue;
}
// GCD(gcd, value) = GCD(value, gcd % value);
while (value != 0) {
const int64_t r = gcd % value;
gcd = value;
value = r;
}
}
DCHECK_GE(gcd, 0);
return gcd > 0 ? gcd : 1;
}
int fast_ilogb(double value) {
static_assert(CHAR_BIT == 8);
static_assert(sizeof(double) == 8);
// Get little-endian bit-representation of the floating point value.
const uint64_t bit_rep =
absl::little_endian::FromHost64(absl::bit_cast<uint64_t>(value));
return static_cast<int>((bit_rep >> 52) & 0x7FF) - 1023;
}
void fast_scalbn_inplace(double& mutable_value, int exponent) {
mutable_value = fast_scalbn(mutable_value, exponent);
}
double fast_scalbn(double value, int exponent) {
if (value == 0.0) return 0.0;
uint64_t bit_rep =
absl::little_endian::FromHost64(absl::bit_cast<uint64_t>(value));
// Binary representation is: (sign-bit)(11 exponent bits)(52 mantissa bits)
constexpr uint64_t kExponentMask(0x7FF0000000000000);
// This addition relies on the fact that signed numbers are written in
// two-s complement, and is correct as long as the sum does not
// overflow/underflow the result.
const uint64_t value_exponent =
(bit_rep + (static_cast<uint64_t>(exponent) << 52)) & kExponentMask;
bit_rep &= ~kExponentMask;
bit_rep |= value_exponent;
return absl::bit_cast<double>(absl::little_endian::ToHost64(bit_rep));
}
} // namespace operations_research