-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcircuit.cc
709 lines (639 loc) · 25 KB
/
circuit.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/circuit.h"
#include <functional>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/log/check.h"
#include "absl/meta/type_traits.h"
#include "ortools/base/logging.h"
#include "ortools/graph/strongly_connected_components.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
CircuitPropagator::CircuitPropagator(const int num_nodes,
const std::vector<int>& tails,
const std::vector<int>& heads,
const std::vector<Literal>& literals,
Options options, Model* model)
: num_nodes_(num_nodes),
options_(options),
trail_(model->GetOrCreate<Trail>()),
assignment_(trail_->Assignment()) {
CHECK(!tails.empty()) << "Empty constraint, shouldn't be constructed!";
next_.resize(num_nodes_, -1);
prev_.resize(num_nodes_, -1);
next_literal_.resize(num_nodes_);
must_be_in_cycle_.resize(num_nodes_);
absl::flat_hash_map<LiteralIndex, int> literal_to_watch_index;
// Temporary data to fill watch_index_to_arcs_.
const int num_arcs = tails.size();
std::vector<int> keys;
std::vector<Arc> values;
keys.reserve(num_arcs);
values.reserve(num_arcs);
graph_.reserve(num_arcs);
self_arcs_.resize(num_nodes_, kFalseLiteralIndex);
for (int arc = 0; arc < num_arcs; ++arc) {
const int head = heads[arc];
const int tail = tails[arc];
const Literal literal = literals[arc];
if (assignment_.LiteralIsFalse(literal)) continue;
if (tail == head) {
self_arcs_[tail] = literal.Index();
} else {
graph_[{tail, head}] = literal;
}
if (assignment_.LiteralIsTrue(literal)) {
if (next_[tail] != -1 || prev_[head] != -1) {
VLOG(1) << "Trivially UNSAT or duplicate arcs while adding " << tail
<< " -> " << head;
model->GetOrCreate<SatSolver>()->NotifyThatModelIsUnsat();
return;
}
AddArc(tail, head, kNoLiteralIndex);
continue;
}
// Tricky: For self-arc, we watch instead when the arc become false.
const Literal watched_literal = tail == head ? literal.Negated() : literal;
const auto& it = literal_to_watch_index.find(watched_literal.Index());
int watch_index = it != literal_to_watch_index.end() ? it->second : -1;
if (watch_index == -1) {
watch_index = watch_index_to_literal_.size();
literal_to_watch_index[watched_literal.Index()] = watch_index;
watch_index_to_literal_.push_back(watched_literal);
}
keys.push_back(watch_index);
values.push_back({tail, head});
}
watch_index_to_arcs_.ResetFromFlatMapping(keys, values);
for (int node = 0; node < num_nodes_; ++node) {
if (self_arcs_[node] == kFalseLiteralIndex ||
assignment_.LiteralIsFalse(Literal(self_arcs_[node]))) {
// For the multiple_subcircuit_through_zero case, must_be_in_cycle_ will
// be const and only contains zero.
if (node == 0 || !options_.multiple_subcircuit_through_zero) {
must_be_in_cycle_[rev_must_be_in_cycle_size_++] = node;
}
}
}
}
void CircuitPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
for (int w = 0; w < watch_index_to_literal_.size(); ++w) {
watcher->WatchLiteral(watch_index_to_literal_[w], id, w);
}
watcher->RegisterReversibleClass(id, this);
watcher->RegisterReversibleInt(id, &rev_must_be_in_cycle_size_);
// This is needed in case a Literal is used for more than one arc, we may
// propagate it to false/true here, and it might trigger more propagation.
//
// TODO(user): come up with a test that fail when this is not here.
watcher->NotifyThatPropagatorMayNotReachFixedPointInOnePass(id);
}
void CircuitPropagator::SetLevel(int level) {
if (level == level_ends_.size()) return;
if (level > level_ends_.size()) {
while (level > level_ends_.size()) {
level_ends_.push_back(added_arcs_.size());
}
return;
}
// Backtrack.
for (int i = level_ends_[level]; i < added_arcs_.size(); ++i) {
const Arc arc = added_arcs_[i];
next_[arc.tail] = -1;
prev_[arc.head] = -1;
}
added_arcs_.resize(level_ends_[level]);
level_ends_.resize(level);
}
void CircuitPropagator::FillReasonForPath(int start_node,
std::vector<Literal>* reason) const {
CHECK_NE(start_node, -1);
reason->clear();
int node = start_node;
while (next_[node] != -1) {
if (next_literal_[node] != kNoLiteralIndex) {
reason->push_back(Literal(next_literal_[node]).Negated());
}
node = next_[node];
if (node == start_node) break;
}
}
// If multiple_subcircuit_through_zero is true, we never fill next_[0] and
// prev_[0].
void CircuitPropagator::AddArc(int tail, int head, LiteralIndex literal_index) {
if (tail != 0 || !options_.multiple_subcircuit_through_zero) {
next_[tail] = head;
next_literal_[tail] = literal_index;
}
if (head != 0 || !options_.multiple_subcircuit_through_zero) {
prev_[head] = tail;
}
}
bool CircuitPropagator::IncrementalPropagate(
const std::vector<int>& watch_indices) {
for (const int w : watch_indices) {
const Literal literal = watch_index_to_literal_[w];
for (const Arc arc : watch_index_to_arcs_[w]) {
// Special case for self-arc.
if (arc.tail == arc.head) {
must_be_in_cycle_[rev_must_be_in_cycle_size_++] = arc.tail;
continue;
}
// Get rid of the trivial conflicts: At most one incoming and one outgoing
// arc for each nodes.
if (next_[arc.tail] != -1) {
std::vector<Literal>* conflict = trail_->MutableConflict();
if (next_literal_[arc.tail] != kNoLiteralIndex) {
*conflict = {Literal(next_literal_[arc.tail]).Negated(),
literal.Negated()};
} else {
*conflict = {literal.Negated()};
}
return false;
}
if (prev_[arc.head] != -1) {
std::vector<Literal>* conflict = trail_->MutableConflict();
if (next_literal_[prev_[arc.head]] != kNoLiteralIndex) {
*conflict = {Literal(next_literal_[prev_[arc.head]]).Negated(),
literal.Negated()};
} else {
*conflict = {literal.Negated()};
}
return false;
}
// Add the arc.
AddArc(arc.tail, arc.head, literal.Index());
added_arcs_.push_back(arc);
}
}
return Propagate();
}
// This function assumes that next_, prev_, next_literal_ and must_be_in_cycle_
// are all up to date.
bool CircuitPropagator::Propagate() {
processed_.assign(num_nodes_, false);
for (int n = 0; n < num_nodes_; ++n) {
if (processed_[n]) continue;
if (next_[n] == n) continue;
if (next_[n] == -1 && prev_[n] == -1) continue;
// TODO(user): both this and the loop on must_be_in_cycle_ might take some
// time on large graph. Optimize if this become an issue.
in_current_path_.assign(num_nodes_, false);
// Find the start and end of the path containing node n. If this is a
// circuit, we will have start_node == end_node.
int start_node = n;
int end_node = n;
in_current_path_[n] = true;
processed_[n] = true;
while (next_[end_node] != -1) {
end_node = next_[end_node];
in_current_path_[end_node] = true;
processed_[end_node] = true;
if (end_node == n) break;
}
while (prev_[start_node] != -1) {
start_node = prev_[start_node];
in_current_path_[start_node] = true;
processed_[start_node] = true;
if (start_node == n) break;
}
// TODO(user): we can fail early in more case, like no more possible path
// to any of the mandatory node.
if (options_.multiple_subcircuit_through_zero) {
// Any cycle must contain zero.
if (start_node == end_node && !in_current_path_[0]) {
FillReasonForPath(start_node, trail_->MutableConflict());
return false;
}
// An incomplete path cannot be closed except if one of the end-points
// is zero.
if (start_node != end_node && start_node != 0 && end_node != 0) {
const auto it = graph_.find({end_node, start_node});
if (it == graph_.end()) continue;
const Literal literal = it->second;
if (assignment_.LiteralIsFalse(literal)) continue;
std::vector<Literal>* reason = trail_->GetEmptyVectorToStoreReason();
FillReasonForPath(start_node, reason);
if (!trail_->EnqueueWithStoredReason(literal.Negated())) {
return false;
}
}
// None of the other propagation below are valid in case of multiple
// circuits.
continue;
}
// Check if we miss any node that must be in the circuit. Note that the ones
// for which self_arcs_[i] is kFalseLiteralIndex are first. This is good as
// it will produce shorter reason. Otherwise we prefer the first that was
// assigned in the trail.
bool miss_some_nodes = false;
LiteralIndex extra_reason = kFalseLiteralIndex;
for (int i = 0; i < rev_must_be_in_cycle_size_; ++i) {
const int node = must_be_in_cycle_[i];
if (!in_current_path_[node]) {
miss_some_nodes = true;
extra_reason = self_arcs_[node];
break;
}
}
if (miss_some_nodes) {
// A circuit that miss a mandatory node is a conflict.
if (start_node == end_node) {
FillReasonForPath(start_node, trail_->MutableConflict());
if (extra_reason != kFalseLiteralIndex) {
trail_->MutableConflict()->push_back(Literal(extra_reason));
}
return false;
}
// We have an unclosed path. Propagate the fact that it cannot
// be closed into a cycle, i.e. not(end_node -> start_node).
if (start_node != end_node) {
const auto it = graph_.find({end_node, start_node});
if (it == graph_.end()) continue;
const Literal literal = it->second;
if (assignment_.LiteralIsFalse(literal)) continue;
std::vector<Literal>* reason = trail_->GetEmptyVectorToStoreReason();
FillReasonForPath(start_node, reason);
if (extra_reason != kFalseLiteralIndex) {
reason->push_back(Literal(extra_reason));
}
const bool ok = trail_->EnqueueWithStoredReason(literal.Negated());
if (!ok) return false;
continue;
}
}
// If we have a cycle, we can propagate all the other nodes to point to
// themselves. Otherwise there is nothing else to do.
if (start_node != end_node) continue;
BooleanVariable variable_with_same_reason = kNoBooleanVariable;
for (int node = 0; node < num_nodes_; ++node) {
if (in_current_path_[node]) continue;
if (self_arcs_[node] >= 0 &&
assignment_.LiteralIsTrue(Literal(self_arcs_[node]))) {
continue;
}
// This shouldn't happen because ExactlyOnePerRowAndPerColumn() should
// have executed first and propagated self_arcs_[node] to false.
CHECK_EQ(next_[node], -1);
// We should have detected that above (miss_some_nodes == true). But we
// still need this for corner cases where the same literal is used for
// many arcs, and we just propagated it here.
if (self_arcs_[node] == kFalseLiteralIndex ||
assignment_.LiteralIsFalse(Literal(self_arcs_[node]))) {
FillReasonForPath(start_node, trail_->MutableConflict());
if (self_arcs_[node] != kFalseLiteralIndex) {
trail_->MutableConflict()->push_back(Literal(self_arcs_[node]));
}
return false;
}
// Propagate.
const Literal literal(self_arcs_[node]);
if (variable_with_same_reason == kNoBooleanVariable) {
variable_with_same_reason = literal.Variable();
FillReasonForPath(start_node, trail_->GetEmptyVectorToStoreReason());
const bool ok = trail_->EnqueueWithStoredReason(literal);
if (!ok) return false;
} else {
trail_->EnqueueWithSameReasonAs(literal, variable_with_same_reason);
}
}
}
return true;
}
NoCyclePropagator::NoCyclePropagator(int num_nodes,
const std::vector<int>& tails,
const std::vector<int>& heads,
const std::vector<Literal>& literals,
Model* model)
: num_nodes_(num_nodes),
trail_(model->GetOrCreate<Trail>()),
assignment_(trail_->Assignment()) {
CHECK(!tails.empty()) << "Empty constraint, shouldn't be constructed!";
graph_.resize(num_nodes);
graph_literals_.resize(num_nodes);
const int num_arcs = tails.size();
absl::flat_hash_map<LiteralIndex, int> literal_to_watch_index;
for (int arc = 0; arc < num_arcs; ++arc) {
const int head = heads[arc];
const int tail = tails[arc];
const Literal literal = literals[arc];
if (assignment_.LiteralIsFalse(literal)) continue;
if (assignment_.LiteralIsTrue(literal)) {
// Fixed arc. It will never be removed.
graph_[tail].push_back(head);
graph_literals_[tail].push_back(literal);
continue;
}
// We have to deal with the same literal controlling more than one arc.
const auto [it, inserted] = literal_to_watch_index.insert(
{literal.Index(), watch_index_to_literal_.size()});
if (inserted) {
watch_index_to_literal_.push_back(literal);
watch_index_to_arcs_.push_back({});
}
watch_index_to_arcs_[it->second].push_back({tail, head});
}
// We register at construction.
//
// TODO(user): Uniformize this across propagator. Sometimes it is nice not
// to register them, but most of them can be registered right away.
RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
}
void NoCyclePropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
for (int w = 0; w < watch_index_to_literal_.size(); ++w) {
watcher->WatchLiteral(watch_index_to_literal_[w], id, w);
}
watcher->RegisterReversibleClass(id, this);
// This class currently only test for conflict, so no need to call it twice.
// watcher->NotifyThatPropagatorMayNotReachFixedPointInOnePass(id);
}
void NoCyclePropagator::SetLevel(int level) {
if (level == level_ends_.size()) return;
if (level > level_ends_.size()) {
while (level > level_ends_.size()) {
level_ends_.push_back(touched_nodes_.size());
}
return;
}
// Backtrack.
for (int i = level_ends_[level]; i < touched_nodes_.size(); ++i) {
graph_literals_[touched_nodes_[i]].pop_back();
graph_[touched_nodes_[i]].pop_back();
}
touched_nodes_.resize(level_ends_[level]);
level_ends_.resize(level);
}
bool NoCyclePropagator::IncrementalPropagate(
const std::vector<int>& watch_indices) {
for (const int w : watch_indices) {
const Literal literal = watch_index_to_literal_[w];
for (const auto& [tail, head] : watch_index_to_arcs_[w]) {
graph_[tail].push_back(head);
graph_literals_[tail].push_back(literal);
touched_nodes_.push_back(tail);
}
}
return Propagate();
}
// TODO(user): only explore node with newly added arcs.
//
// TODO(user): We could easily re-index the graph so that only nodes with arcs
// are used. Because right now we are in O(num_nodes) even if the graph is
// empty.
bool NoCyclePropagator::Propagate() {
// The graph should be up to date when this is called thanks to
// IncrementalPropagate(). We just do a SCC on the graph.
components_.clear();
FindStronglyConnectedComponents(num_nodes_, graph_, &components_);
for (const std::vector<int>& compo : components_) {
if (compo.size() <= 1) continue;
// We collect all arc from this compo.
//
// TODO(user): We could be more efficient here, but this is only executed on
// conflicts. We should at least make sure we return a single cycle even
// though if this is called often enough, we shouldn't have a lot more than
// this.
absl::flat_hash_set<int> nodes(compo.begin(), compo.end());
std::vector<Literal>* conflict = trail_->MutableConflict();
conflict->clear();
for (const int tail : compo) {
const int degree = graph_[tail].size();
CHECK_EQ(degree, graph_literals_[tail].size());
for (int i = 0; i < degree; ++i) {
if (nodes.contains(graph_[tail][i])) {
conflict->push_back(graph_literals_[tail][i].Negated());
}
}
}
return false;
}
return true;
}
CircuitCoveringPropagator::CircuitCoveringPropagator(
std::vector<std::vector<Literal>> graph,
const std::vector<int>& distinguished_nodes, Model* model)
: graph_(std::move(graph)),
num_nodes_(graph_.size()),
trail_(model->GetOrCreate<Trail>()) {
node_is_distinguished_.resize(num_nodes_, false);
for (const int node : distinguished_nodes) {
node_is_distinguished_[node] = true;
}
}
void CircuitCoveringPropagator::RegisterWith(GenericLiteralWatcher* watcher) {
const int watcher_id = watcher->Register(this);
// Fill fixed_arcs_ with arcs that are initially fixed to true,
// assign arcs to watch indices.
for (int node1 = 0; node1 < num_nodes_; node1++) {
for (int node2 = 0; node2 < num_nodes_; node2++) {
const Literal l = graph_[node1][node2];
if (trail_->Assignment().LiteralIsFalse(l)) continue;
if (trail_->Assignment().LiteralIsTrue(l)) {
fixed_arcs_.emplace_back(node1, node2);
} else {
watcher->WatchLiteral(l, watcher_id, watch_index_to_arc_.size());
watch_index_to_arc_.emplace_back(node1, node2);
}
}
}
watcher->RegisterReversibleClass(watcher_id, this);
}
void CircuitCoveringPropagator::SetLevel(int level) {
if (level == level_ends_.size()) return;
if (level > level_ends_.size()) {
while (level > level_ends_.size()) {
level_ends_.push_back(fixed_arcs_.size());
}
} else {
// Backtrack.
fixed_arcs_.resize(level_ends_[level]);
level_ends_.resize(level);
}
}
bool CircuitCoveringPropagator::IncrementalPropagate(
const std::vector<int>& watch_indices) {
for (const int w : watch_indices) {
const auto& arc = watch_index_to_arc_[w];
fixed_arcs_.push_back(arc);
}
return Propagate();
}
void CircuitCoveringPropagator::FillFixedPathInReason(
int start, int end, std::vector<Literal>* reason) {
reason->clear();
int current = start;
do {
DCHECK_NE(next_[current], -1);
DCHECK(trail_->Assignment().LiteralIsTrue(graph_[current][next_[current]]));
reason->push_back(graph_[current][next_[current]].Negated());
current = next_[current];
} while (current != end);
}
bool CircuitCoveringPropagator::Propagate() {
// Gather next_ and prev_ from fixed arcs.
next_.assign(num_nodes_, -1);
prev_.assign(num_nodes_, -1);
for (const auto& arc : fixed_arcs_) {
// Two arcs go out of arc.first, forbidden.
if (next_[arc.first] != -1) {
*trail_->MutableConflict() = {
graph_[arc.first][next_[arc.first]].Negated(),
graph_[arc.first][arc.second].Negated()};
return false;
}
next_[arc.first] = arc.second;
// Two arcs come into arc.second, forbidden.
if (prev_[arc.second] != -1) {
*trail_->MutableConflict() = {
graph_[prev_[arc.second]][arc.second].Negated(),
graph_[arc.first][arc.second].Negated()};
return false;
}
prev_[arc.second] = arc.first;
}
// For every node, find partial path/circuit in which the node is.
// Use visited_ to visit each path/circuit only once.
visited_.assign(num_nodes_, false);
for (int node = 0; node < num_nodes_; node++) {
// Skip if already visited, isolated or loop.
if (visited_[node]) continue;
if (prev_[node] == -1 && next_[node] == -1) continue;
if (prev_[node] == node) continue;
// Find start of path/circuit.
int start = node;
for (int current = prev_[node]; current != -1 && current != node;
current = prev_[current]) {
start = current;
}
// Find distinguished node of path. Fail if there are several,
// fail if this is a non loop circuit and there are none.
int distinguished = node_is_distinguished_[start] ? start : -1;
int current = next_[start];
int end = start;
visited_[start] = true;
while (current != -1 && current != start) {
if (node_is_distinguished_[current]) {
if (distinguished != -1) {
FillFixedPathInReason(distinguished, current,
trail_->MutableConflict());
return false;
}
distinguished = current;
}
visited_[current] = true;
end = current;
current = next_[current];
}
// Circuit with no distinguished nodes, forbidden.
if (start == current && distinguished == -1) {
FillFixedPathInReason(start, start, trail_->MutableConflict());
return false;
}
// Path with no distinguished node: forbid to close it.
if (current == -1 && distinguished == -1 &&
!trail_->Assignment().LiteralIsFalse(graph_[end][start])) {
auto* reason = trail_->GetEmptyVectorToStoreReason();
FillFixedPathInReason(start, end, reason);
const bool ok =
trail_->EnqueueWithStoredReason(graph_[end][start].Negated());
if (!ok) return false;
}
}
return true;
}
std::function<void(Model*)> ExactlyOnePerRowAndPerColumn(
const std::vector<std::vector<Literal>>& graph) {
return [=](Model* model) {
const int n = graph.size();
std::vector<Literal> exactly_one_constraint;
exactly_one_constraint.reserve(n);
for (const bool transpose : {false, true}) {
for (int i = 0; i < n; ++i) {
exactly_one_constraint.clear();
for (int j = 0; j < n; ++j) {
exactly_one_constraint.push_back(transpose ? graph[j][i]
: graph[i][j]);
}
model->Add(ExactlyOneConstraint(exactly_one_constraint));
}
}
};
}
void LoadSubcircuitConstraint(int num_nodes, const std::vector<int>& tails,
const std::vector<int>& heads,
const std::vector<Literal>& literals,
Model* model,
bool multiple_subcircuit_through_zero) {
const int num_arcs = tails.size();
CHECK_GT(num_arcs, 0);
CHECK_EQ(heads.size(), num_arcs);
CHECK_EQ(literals.size(), num_arcs);
// If a node has no outgoing or no incoming arc, the model will be unsat
// as soon as we add the corresponding ExactlyOneConstraint().
auto sat_solver = model->GetOrCreate<SatSolver>();
auto implications = model->GetOrCreate<BinaryImplicationGraph>();
std::vector<std::vector<Literal>> exactly_one_incoming(num_nodes);
std::vector<std::vector<Literal>> exactly_one_outgoing(num_nodes);
for (int arc = 0; arc < num_arcs; arc++) {
const int tail = tails[arc];
const int head = heads[arc];
exactly_one_outgoing[tail].push_back(literals[arc]);
exactly_one_incoming[head].push_back(literals[arc]);
}
for (int i = 0; i < exactly_one_incoming.size(); ++i) {
if (i == 0 && multiple_subcircuit_through_zero) continue;
if (!implications->AddAtMostOne(exactly_one_incoming[i])) {
sat_solver->NotifyThatModelIsUnsat();
return;
}
sat_solver->AddProblemClause(exactly_one_incoming[i]);
if (sat_solver->ModelIsUnsat()) return;
}
for (int i = 0; i < exactly_one_outgoing.size(); ++i) {
if (i == 0 && multiple_subcircuit_through_zero) continue;
if (!implications->AddAtMostOne(exactly_one_outgoing[i])) {
sat_solver->NotifyThatModelIsUnsat();
return;
}
sat_solver->AddProblemClause(exactly_one_outgoing[i]);
if (sat_solver->ModelIsUnsat()) return;
}
CircuitPropagator::Options options;
options.multiple_subcircuit_through_zero = multiple_subcircuit_through_zero;
CircuitPropagator* constraint =
new CircuitPropagator(num_nodes, tails, heads, literals, options, model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
}
std::function<void(Model*)> CircuitCovering(
const std::vector<std::vector<Literal>>& graph,
const std::vector<int>& distinguished_nodes) {
return [=](Model* model) {
CircuitCoveringPropagator* constraint =
new CircuitCoveringPropagator(graph, distinguished_nodes, model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
} // namespace sat
} // namespace operations_research