-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcliques.h
567 lines (509 loc) · 24.3 KB
/
cliques.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Maximal clique algorithms, based on the Bron-Kerbosch algorithm.
// See http://en.wikipedia.org/wiki/Bron-Kerbosch_algorithm
// and
// C. Bron and J. Kerbosch, Joep, "Algorithm 457: finding all cliques of an
// undirected graph", CACM 16 (9): 575-577, 1973.
// http://dl.acm.org/citation.cfm?id=362367&bnc=1.
//
// Keywords: undirected graph, clique, clique cover, Bron, Kerbosch.
#ifndef OR_TOOLS_GRAPH_CLIQUES_H_
#define OR_TOOLS_GRAPH_CLIQUES_H_
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <numeric>
#include <string>
#include <vector>
#include "absl/strings/str_cat.h"
#include "ortools/base/int_type.h"
#include "ortools/base/logging.h"
#include "ortools/base/strong_vector.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
// Finds all maximal cliques, even of size 1, in the
// graph described by the graph callback. graph->Run(i, j) indicates
// if there is an arc between i and j.
// This function takes ownership of 'callback' and deletes it after it has run.
// If 'callback' returns true, then the search for cliques stops.
void FindCliques(std::function<bool(int, int)> graph, int node_count,
std::function<bool(const std::vector<int>&)> callback);
// Covers the maximum number of arcs of the graph with cliques. The graph
// is described by the graph callback. graph->Run(i, j) indicates if
// there is an arc between i and j.
// This function takes ownership of 'callback' and deletes it after it has run.
// It calls 'callback' upon each clique.
// It ignores cliques of size 1.
void CoverArcsByCliques(std::function<bool(int, int)> graph, int node_count,
std::function<bool(const std::vector<int>&)> callback);
// Possible return values of the callback for reporting cliques. The returned
// value determines whether the algorithm will continue the search.
enum class CliqueResponse {
// The algorithm will continue searching for other maximal cliques.
CONTINUE,
// The algorithm will stop the search immediately. The search can be resumed
// by calling BronKerboschAlgorithm::Run (resp. RunIterations) again.
STOP
};
// The status value returned by BronKerboschAlgorithm::Run and
// BronKerboschAlgorithm::RunIterations.
enum class BronKerboschAlgorithmStatus {
// The algorithm has enumerated all maximal cliques.
COMPLETED,
// The search algorithm was interrupted either because it reached the
// iteration limit or because the clique callback returned
// CliqueResponse::STOP.
INTERRUPTED
};
// Implements the Bron-Kerbosch algorithm for finding maximal cliques.
// The graph is represented as a callback that gets two nodes as its arguments
// and it returns true if and only if there is an arc between the two nodes. The
// cliques are reported back to the user using a second callback.
//
// Typical usage:
// auto graph = [](int node1, int node2) { return true; };
// auto on_clique = [](const std::vector<int>& clique) {
// LOG(INFO) << "Clique!";
// };
//
// BronKerboschAlgorithm<int> bron_kerbosch(graph, num_nodes, on_clique);
// bron_kerbosch.Run();
//
// or:
//
// BronKerboschAlgorithm bron_kerbosch(graph, num_nodes, clique);
// bron_kerbosch.RunIterations(kMaxNumIterations);
//
// This is a non-recursive implementation of the Bron-Kerbosch algorithm with
// pivots as described in the paper by Bron and Kerbosch (1973) (the version 2
// algorithm in the paper).
// The basic idea of the algorithm is to incrementally build the cliques using
// depth-first search. During the search, the algorithm maintains two sets of
// candidates (nodes that are connected to all nodes in the current clique):
// - the "not" set - these are candidates that were already visited by the
// search and all the maximal cliques that contain them as a part of the
// current clique were already reported.
// - the actual candidates - these are candidates that were not visited yet, and
// they can be added to the clique.
// In each iteration, the algorithm does the first of the following actions that
// applies:
// A. If there are no actual candidates and there are candidates in the "not"
// set, or if all actual candidates are connected to the same node in the
// "not" set, the current clique can't be extended to a maximal clique that
// was not already reported. Return from the recursive call and move the
// selected candidate to the set "not".
// B. If there are no candidates at all, it means that the current clique can't
// be extended and that it is in fact a maximal clique. Report it to the user
// and return from the recursive call. Move the selected candidate to the set
// "not".
// C. Otherwise, there are actual candidates, extend the current clique with one
// of these candidates and process it recursively.
//
// To avoid unnecessary steps, the algorithm selects a pivot at each level of
// the recursion to guide the selection of candidates added to the current
// clique. The pivot can be either in the "not" set and among the actual
// candidates. The algorithm tries to move the pivot and all actual candidates
// connected to it to the set "not" as quickly as possible. This will fulfill
// the conditions of step A, and the search algorithm will be able to leave the
// current branch. Selecting a pivot that has the lowest number of disconnected
// nodes among the candidates can reduce the running time significantly.
//
// The worst-case maximal depth of the recursion is equal to the number of nodes
// in the graph, which makes the natural recursive implementation impractical
// for nodes with more than a few thousands of nodes. To avoid the limitation,
// this class simulates the recursion by maintaining a stack with the state at
// each level of the recursion. The algorithm then runs in a loop. In each
// iteration, the algorithm can do one or both of:
// 1. Return to the previous recursion level (step A or B of the algorithm) by
// removing the top state from the stack.
// 2. Select the next candidate and enter the next recursion level (step C of
// the algorithm) by adding a new state to the stack.
//
// The worst-case time complexity of the algorithm is O(3^(N/3)), and the memory
// complexity is O(N^2), where N is the number of nodes in the graph.
template <typename NodeIndex>
class BronKerboschAlgorithm {
public:
// A callback called by the algorithm to test if there is an arc between a
// pair of nodes. The callback must return true if and only if there is an
// arc. Note that to function properly, the function must be symmetrical
// (represent an undirected graph).
using IsArcCallback = std::function<bool(NodeIndex, NodeIndex)>;
// A callback called by the algorithm to report a maximal clique to the user.
// The clique is returned as a list of nodes in the clique, in no particular
// order. The caller must make a copy of the vector if they want to keep the
// nodes.
//
// The return value of the callback controls how the algorithm continues after
// this clique. See the description of the values of 'CliqueResponse' for more
// details.
using CliqueCallback =
std::function<CliqueResponse(const std::vector<NodeIndex>&)>;
// Initializes the Bron-Kerbosch algorithm for the given graph and clique
// callback function.
BronKerboschAlgorithm(IsArcCallback is_arc, NodeIndex num_nodes,
CliqueCallback clique_callback)
: is_arc_(std::move(is_arc)),
clique_callback_(std::move(clique_callback)),
num_nodes_(num_nodes) {}
// Runs the Bron-Kerbosch algorithm for kint64max iterations. In practice,
// this is equivalent to running until completion or until the clique callback
// returns BronKerboschAlgorithmStatus::STOP. If the method returned because
// the search is finished, it will return COMPLETED; otherwise, it will return
// INTERRUPTED and it can be resumed by calling this method again.
BronKerboschAlgorithmStatus Run();
// Runs at most 'max_num_iterations' iterations of the Bron-Kerbosch
// algorithm. When this function returns INTERRUPTED, there is still work to
// be done to process all the cliques in the graph. In such case the method
// can be called again and it will resume the work where the previous call had
// stopped. When it returns COMPLETED any subsequent call to the method will
// resume the search from the beginning.
BronKerboschAlgorithmStatus RunIterations(int64_t max_num_iterations);
// Runs at most 'max_num_iterations' iterations of the Bron-Kerbosch
// algorithm, until the time limit is exceeded or until all cliques are
// enumerated. When this function returns INTERRUPTED, there is still work to
// be done to process all the cliques in the graph. In such case the method
// can be called again and it will resume the work where the previous call had
// stopped. When it returns COMPLETED any subsequent call to the method will
// resume the search from the beginning.
BronKerboschAlgorithmStatus RunWithTimeLimit(int64_t max_num_iterations,
TimeLimit* time_limit);
// Runs the Bron-Kerbosch algorithm for at most kint64max iterations, until
// the time limit is excceded or until all cliques are enumerated. In
// practice, running the algorithm for kint64max iterations is equivalent to
// running until completion or until the other stopping conditions apply. When
// this function returns INTERRUPTED, there is still work to be done to
// process all the cliques in the graph. In such case the method can be called
// again and it will resume the work where the previous call had stopped. When
// it returns COMPLETED any subsequent call to the method will resume the
// search from the beginning.
BronKerboschAlgorithmStatus RunWithTimeLimit(TimeLimit* time_limit) {
return RunWithTimeLimit(std::numeric_limits<int64_t>::max(), time_limit);
}
private:
DEFINE_INT_TYPE(CandidateIndex, ptrdiff_t);
// A data structure that maintains the variables of one "iteration" of the
// search algorithm. These are the variables that would normally be allocated
// on the stack in the recursive implementation.
//
// Note that most of the variables in the structure are explicitly left
// uninitialized by the constructor to avoid wasting resources on values that
// will be overwritten anyway. Most of the initialization is done in
// BronKerboschAlgorithm::InitializeState.
struct State {
State() {}
State(const State& other)
: pivot(other.pivot),
num_remaining_candidates(other.num_remaining_candidates),
candidates(other.candidates),
first_candidate_index(other.first_candidate_index),
candidate_for_recursion(other.candidate_for_recursion) {}
State& operator=(const State& other) {
pivot = other.pivot;
num_remaining_candidates = other.num_remaining_candidates;
candidates = other.candidates;
first_candidate_index = other.first_candidate_index;
candidate_for_recursion = other.candidate_for_recursion;
return *this;
}
// Moves the first candidate in the state to the "not" set. Assumes that the
// first candidate is also the pivot or a candidate disconnected from the
// pivot (as done by RunIteration).
inline void MoveFirstCandidateToNotSet() {
++first_candidate_index;
--num_remaining_candidates;
}
// Creates a human-readable representation of the current state.
std::string DebugString() {
std::string buffer;
absl::StrAppend(&buffer, "pivot = ", pivot,
"\nnum_remaining_candidates = ", num_remaining_candidates,
"\ncandidates = [");
for (CandidateIndex i(0); i < candidates.size(); ++i) {
if (i > 0) buffer += ", ";
absl::StrAppend(&buffer, candidates[i]);
}
absl::StrAppend(
&buffer, "]\nfirst_candidate_index = ", first_candidate_index.value(),
"\ncandidate_for_recursion = ", candidate_for_recursion.value());
return buffer;
}
// The pivot node selected for the given level of the recursion.
NodeIndex pivot;
// The number of remaining candidates to be explored at the given level of
// the recursion; the number is computed as num_disconnected_nodes +
// pre_increment in the original algorithm.
int num_remaining_candidates;
// The list of nodes that are candidates for extending the current clique.
// This vector has the format proposed in the paper by Bron-Kerbosch; the
// first 'first_candidate_index' elements of the vector represent the
// "not" set of nodes that were already visited by the algorithm. The
// remaining elements are the actual candidates for extending the current
// clique.
// NOTE(user): We could store the delta between the iterations; however,
// we need to evaluate the impact this would have on the performance.
util_intops::StrongVector<CandidateIndex, NodeIndex> candidates;
// The index of the first actual candidate in 'candidates'. This number is
// also the number of elements of the "not" set stored at the beginning of
// 'candidates'.
CandidateIndex first_candidate_index;
// The current position in candidates when looking for the pivot and/or the
// next candidate disconnected from the pivot.
CandidateIndex candidate_for_recursion;
};
// The deterministic time coefficients for the push and pop operations of the
// Bron-Kerbosch algorithm. The coefficients are set to match approximately
// the running time in seconds on a recent workstation on the random graph
// benchmark.
// NOTE(user): PushState is not the only source of complexity in the
// algorithm, but non-negative linear least squares produced zero coefficients
// for all other deterministic counters tested during the benchmarking. When
// we optimize the algorithm, we might need to add deterministic time to the
// other places that may produce complexity, namely InitializeState, PopState
// and SelectCandidateIndexForRecursion.
static const double kPushStateDeterministicTimeSecondsPerCandidate;
// Initializes the root state of the algorithm.
void Initialize();
// Removes the top state from the state stack. This is equivalent to returning
// in the recursive implementation of the algorithm.
void PopState();
// Adds a new state to the top of the stack, adding the node 'selected' to the
// current clique. This is equivalent to making a recurisve call in the
// recursive implementation of the algorithm.
void PushState(NodeIndex selected);
// Initializes the given state. Runs the pivot selection algorithm in the
// state.
void InitializeState(State* state);
// Returns true if (node1, node2) is an arc in the graph or if node1 == node2.
inline bool IsArc(NodeIndex node1, NodeIndex node2) const {
return node1 == node2 || is_arc_(node1, node2);
}
// Selects the next node for recursion. The selected node is either the pivot
// (if it is not in the set "not") or a node that is disconnected from the
// pivot.
CandidateIndex SelectCandidateIndexForRecursion(State* state);
// Returns a human-readable string representation of the clique.
std::string CliqueDebugString(const std::vector<NodeIndex>& clique);
// The callback called when the algorithm needs to determine if (node1, node2)
// is an arc in the graph.
IsArcCallback is_arc_;
// The callback called when the algorithm discovers a maximal clique. The
// return value of the callback controls how the algorithm proceeds with the
// clique search.
CliqueCallback clique_callback_;
// The number of nodes in the graph.
const NodeIndex num_nodes_;
// Contains the state of the aglorithm. The vector serves as an external stack
// for the recursive part of the algorithm - instead of using the C++ stack
// and natural recursion, it is implemented as a loop and new states are added
// to the top of the stack. The algorithm ends when the stack is empty.
std::vector<State> states_;
// A vector that receives the current clique found by the algorithm.
std::vector<NodeIndex> current_clique_;
// Set to true if the algorithm is active (it was not stopped by a the clique
// callback).
int64_t num_remaining_iterations_;
// The current time limit used by the solver. The time limit is assigned by
// the Run methods and it can be different for each call to run.
TimeLimit* time_limit_;
};
template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::InitializeState(State* state) {
DCHECK(state != nullptr);
const int num_candidates = state->candidates.size();
int num_disconnected_candidates = num_candidates;
state->pivot = 0;
CandidateIndex pivot_index(-1);
for (CandidateIndex pivot_candidate_index(0);
pivot_candidate_index < num_candidates &&
num_disconnected_candidates > 0;
++pivot_candidate_index) {
const NodeIndex pivot_candidate = state->candidates[pivot_candidate_index];
int count = 0;
for (CandidateIndex i(state->first_candidate_index); i < num_candidates;
++i) {
if (!IsArc(pivot_candidate, state->candidates[i])) {
++count;
}
}
if (count < num_disconnected_candidates) {
pivot_index = pivot_candidate_index;
state->pivot = pivot_candidate;
num_disconnected_candidates = count;
}
}
state->num_remaining_candidates = num_disconnected_candidates;
if (pivot_index >= state->first_candidate_index) {
std::swap(state->candidates[pivot_index],
state->candidates[state->first_candidate_index]);
++state->num_remaining_candidates;
}
}
template <typename NodeIndex>
typename BronKerboschAlgorithm<NodeIndex>::CandidateIndex
BronKerboschAlgorithm<NodeIndex>::SelectCandidateIndexForRecursion(
State* state) {
DCHECK(state != nullptr);
CandidateIndex disconnected_node_index =
std::max(state->first_candidate_index, state->candidate_for_recursion);
while (disconnected_node_index < state->candidates.size() &&
state->candidates[disconnected_node_index] != state->pivot &&
IsArc(state->pivot, state->candidates[disconnected_node_index])) {
++disconnected_node_index;
}
state->candidate_for_recursion = disconnected_node_index;
return disconnected_node_index;
}
template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::Initialize() {
DCHECK(states_.empty());
states_.reserve(num_nodes_);
states_.emplace_back();
State* const root_state = &states_.back();
root_state->first_candidate_index = 0;
root_state->candidate_for_recursion = 0;
root_state->candidates.resize(num_nodes_, 0);
std::iota(root_state->candidates.begin(), root_state->candidates.end(), 0);
root_state->num_remaining_candidates = num_nodes_;
InitializeState(root_state);
DVLOG(2) << "Initialized";
}
template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::PopState() {
DCHECK(!states_.empty());
states_.pop_back();
if (!states_.empty()) {
State* const state = &states_.back();
current_clique_.pop_back();
state->MoveFirstCandidateToNotSet();
}
}
template <typename NodeIndex>
std::string BronKerboschAlgorithm<NodeIndex>::CliqueDebugString(
const std::vector<NodeIndex>& clique) {
std::string message = "Clique: [ ";
for (const NodeIndex node : clique) {
absl::StrAppend(&message, node, " ");
}
message += "]";
return message;
}
template <typename NodeIndex>
void BronKerboschAlgorithm<NodeIndex>::PushState(NodeIndex selected) {
DCHECK(!states_.empty());
DCHECK(time_limit_ != nullptr);
DVLOG(2) << "PushState: New depth = " << states_.size() + 1
<< ", selected node = " << selected;
util_intops::StrongVector<CandidateIndex, NodeIndex> new_candidates;
State* const previous_state = &states_.back();
const double deterministic_time =
kPushStateDeterministicTimeSecondsPerCandidate *
previous_state->candidates.size();
time_limit_->AdvanceDeterministicTime(deterministic_time, "PushState");
// Add all candidates from previous_state->candidates that are connected to
// 'selected' in the graph to the vector 'new_candidates', skipping the node
// 'selected'; this node is always at the position
// 'previous_state->first_candidate_index', so we can skip it by skipping the
// element at this particular index.
new_candidates.reserve(previous_state->candidates.size());
for (CandidateIndex i(0); i < previous_state->first_candidate_index; ++i) {
const NodeIndex candidate = previous_state->candidates[i];
if (IsArc(selected, candidate)) {
new_candidates.push_back(candidate);
}
}
const CandidateIndex new_first_candidate_index(new_candidates.size());
for (CandidateIndex i = previous_state->first_candidate_index + 1;
i < previous_state->candidates.size(); ++i) {
const NodeIndex candidate = previous_state->candidates[i];
if (IsArc(selected, candidate)) {
new_candidates.push_back(candidate);
}
}
current_clique_.push_back(selected);
if (new_candidates.empty()) {
// We've found a clique. Report it to the user, but do not push the state
// because it would be popped immediately anyway.
DVLOG(2) << CliqueDebugString(current_clique_);
const CliqueResponse response = clique_callback_(current_clique_);
if (response == CliqueResponse::STOP) {
// The number of remaining iterations will be decremented at the end of
// the loop in RunIterations; setting it to 0 here would make it -1 at
// the end of the main loop.
num_remaining_iterations_ = 1;
}
current_clique_.pop_back();
previous_state->MoveFirstCandidateToNotSet();
return;
}
// NOTE(user): The following line may invalidate previous_state (if the
// vector data was re-allocated in the process). We must avoid using
// previous_state below here.
states_.emplace_back();
State* const new_state = &states_.back();
new_state->candidates.swap(new_candidates);
new_state->first_candidate_index = new_first_candidate_index;
InitializeState(new_state);
}
template <typename NodeIndex>
BronKerboschAlgorithmStatus BronKerboschAlgorithm<NodeIndex>::RunWithTimeLimit(
int64_t max_num_iterations, TimeLimit* time_limit) {
CHECK(time_limit != nullptr);
time_limit_ = time_limit;
if (states_.empty()) {
Initialize();
}
for (num_remaining_iterations_ = max_num_iterations;
!states_.empty() && num_remaining_iterations_ > 0 &&
!time_limit->LimitReached();
--num_remaining_iterations_) {
State* const state = &states_.back();
DVLOG(2) << "Loop: " << states_.size() << " states, "
<< state->num_remaining_candidates << " candidate to explore\n"
<< state->DebugString();
if (state->num_remaining_candidates == 0) {
PopState();
continue;
}
const CandidateIndex selected_index =
SelectCandidateIndexForRecursion(state);
DVLOG(2) << "selected_index = " << selected_index;
const NodeIndex selected = state->candidates[selected_index];
DVLOG(2) << "Selected candidate = " << selected;
NodeIndex& f = state->candidates[state->first_candidate_index];
NodeIndex& s = state->candidates[selected_index];
std::swap(f, s);
PushState(selected);
}
time_limit_ = nullptr;
return states_.empty() ? BronKerboschAlgorithmStatus::COMPLETED
: BronKerboschAlgorithmStatus::INTERRUPTED;
}
template <typename NodeIndex>
BronKerboschAlgorithmStatus BronKerboschAlgorithm<NodeIndex>::RunIterations(
int64_t max_num_iterations) {
TimeLimit time_limit(std::numeric_limits<double>::infinity());
return RunWithTimeLimit(max_num_iterations, &time_limit);
}
template <typename NodeIndex>
BronKerboschAlgorithmStatus BronKerboschAlgorithm<NodeIndex>::Run() {
return RunIterations(std::numeric_limits<int64_t>::max());
}
template <typename NodeIndex>
const double BronKerboschAlgorithm<
NodeIndex>::kPushStateDeterministicTimeSecondsPerCandidate = 0.54663e-7;
} // namespace operations_research
#endif // OR_TOOLS_GRAPH_CLIQUES_H_