-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
pell_equation_sat.py
66 lines (50 loc) · 2.26 KB
/
pell_equation_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves Pell's equation x^2 - coeff * y^2 = 1."""
from collections.abc import Sequence
from absl import app
from absl import flags
from ortools.sat.python import cp_model
_COEFF = flags.DEFINE_integer("coeff", 1, "The Pell equation coefficient.")
_MAX_VALUE = flags.DEFINE_integer("max_value", 5000_000, "The maximum value.")
def solve_pell(coeff: int, max_value: int) -> None:
"""Solves Pell's equation x^2 - coeff * y^2 = 1."""
model = cp_model.CpModel()
x = model.new_int_var(1, max_value, "x")
y = model.new_int_var(1, max_value, "y")
# Pell's equation:
x_square = model.new_int_var(1, max_value * max_value, "x_square")
y_square = model.new_int_var(1, max_value * max_value, "y_square")
model.add_multiplication_equality(x_square, x, x)
model.add_multiplication_equality(y_square, y, y)
model.add(x_square - coeff * y_square == 1)
model.add_decision_strategy(
[x, y], cp_model.CHOOSE_MIN_DOMAIN_SIZE, cp_model.SELECT_MIN_VALUE
)
solver = cp_model.CpSolver()
solver.parameters.num_workers = 12
solver.parameters.log_search_progress = True
solver.parameters.cp_model_presolve = True
solver.parameters.cp_model_probing_level = 0
result = solver.solve(model)
if result == cp_model.OPTIMAL:
print(f"x={solver.value(x)} y={solver.value(y)} coeff={coeff}")
if solver.value(x) ** 2 - coeff * (solver.value(y) ** 2) != 1:
raise ValueError("Pell equation not satisfied.")
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
solve_pell(_COEFF.value, _MAX_VALUE.value)
if __name__ == "__main__":
app.run(main)