-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
jobshop_ft06_sat.py
executable file
·119 lines (99 loc) · 3.69 KB
/
jobshop_ft06_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This model implements a simple jobshop named ft06.
A jobshop is a standard scheduling problem when you must sequence a
series of task_types on a set of machines. Each job contains one task_type per
machine. The order of execution and the length of each job on each
machine is task_type dependent.
The objective is to minimize the maximum completion time of all
jobs. This is called the makespan.
"""
import collections
from ortools.sat.colab import visualization
from ortools.sat.python import cp_model
def jobshop_ft06() -> None:
"""Solves the ft06 jobshop."""
# Creates the solver.
model = cp_model.CpModel()
machines_count = 6
jobs_count = 6
all_machines = range(0, machines_count)
all_jobs = range(0, jobs_count)
durations = [
[1, 3, 6, 7, 3, 6],
[8, 5, 10, 10, 10, 4],
[5, 4, 8, 9, 1, 7],
[5, 5, 5, 3, 8, 9],
[9, 3, 5, 4, 3, 1],
[3, 3, 9, 10, 4, 1],
]
machines = [
[2, 0, 1, 3, 5, 4],
[1, 2, 4, 5, 0, 3],
[2, 3, 5, 0, 1, 4],
[1, 0, 2, 3, 4, 5],
[2, 1, 4, 5, 0, 3],
[1, 3, 5, 0, 4, 2],
]
# Computes horizon dynamically.
horizon = sum([sum(durations[i]) for i in all_jobs])
task_type = collections.namedtuple("task_type", "start end interval")
# Creates jobs.
all_tasks = {}
for i in all_jobs:
for j in all_machines:
start_var = model.new_int_var(0, horizon, f"start_{i}_{j}")
duration = durations[i][j]
end_var = model.new_int_var(0, horizon, f"end_{i}_{j}")
interval_var = model.new_interval_var(
start_var, duration, end_var, f"interval_{i}_{j}"
)
all_tasks[(i, j)] = task_type(
start=start_var, end=end_var, interval=interval_var
)
# Create disjuctive constraints.
machine_to_jobs = {}
for i in all_machines:
machines_jobs = []
for j in all_jobs:
for k in all_machines:
if machines[j][k] == i:
machines_jobs.append(all_tasks[(j, k)].interval)
machine_to_jobs[i] = machines_jobs
model.add_no_overlap(machines_jobs)
# Precedences inside a job.
for i in all_jobs:
for j in range(0, machines_count - 1):
model.add(all_tasks[(i, j + 1)].start >= all_tasks[(i, j)].end)
# Makespan objective.
obj_var = model.new_int_var(0, horizon, "makespan")
model.add_max_equality(
obj_var, [all_tasks[(i, machines_count - 1)].end for i in all_jobs]
)
model.minimize(obj_var)
# Solve the model.
solver = cp_model.CpSolver()
solver.parameters.log_search_progress = True
status = solver.solve(model)
# Output the solution.
if status == cp_model.OPTIMAL:
if visualization.RunFromIPython():
starts = [
[solver.value(all_tasks[(i, j)][0]) for j in all_machines]
for i in all_jobs
]
visualization.DisplayJobshop(starts, durations, machines, "FT06")
else:
print(f"Optimal makespan: {solver.objective_value}")
jobshop_ft06()