-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
chemical_balance_sat.py
119 lines (98 loc) · 3.46 KB
/
chemical_balance_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""We are trying to group items in equal sized groups.
Each item has a color and a value. We want the sum of values of each group to be
as close to the average as possible. Furthermore, if one color is an a group, at
least k items with this color must be in that group.
"""
import math
from typing import Sequence
from absl import app
from ortools.sat.python import cp_model
def chemical_balance():
"""Solves the chemical balance problem."""
# Data
max_quantities = [
["N_Total", 1944],
["P2O5", 1166.4],
["K2O", 1822.5],
["CaO", 1458],
["MgO", 486],
["Fe", 9.7],
["B", 2.4],
]
chemical_set = [
["A", 0, 0, 510, 540, 0, 0, 0],
["B", 110, 0, 0, 0, 160, 0, 0],
["C", 61, 149, 384, 0, 30, 1, 0.2],
["D", 148, 70, 245, 0, 15, 1, 0.2],
["E", 160, 158, 161, 0, 10, 1, 0.2],
]
num_products = len(max_quantities)
all_products = range(num_products)
num_sets = len(chemical_set)
all_sets = range(num_sets)
# Model
model = cp_model.CpModel()
# Scale quantities by 100.
max_set = [
int(
math.ceil(
min(
max_quantities[q][1] * 1000 / chemical_set[s][q + 1]
for q in all_products
if chemical_set[s][q + 1] != 0
)
)
)
for s in all_sets
]
set_vars = [model.new_int_var(0, max_set[s], f"set_{s}") for s in all_sets]
epsilon = model.new_int_var(0, 10000000, "epsilon")
for p in all_products:
model.add(
sum(int(chemical_set[s][p + 1] * 10) * set_vars[s] for s in all_sets)
<= int(max_quantities[p][1] * 10000)
)
model.add(
sum(int(chemical_set[s][p + 1] * 10) * set_vars[s] for s in all_sets)
>= int(max_quantities[p][1] * 10000) - epsilon
)
model.minimize(epsilon)
# Creates a solver and solves.
solver = cp_model.CpSolver()
status = solver.solve(model)
if status == cp_model.OPTIMAL:
# The objective value of the solution.
print(f"Optimal objective value = {solver.objective_value / 10000.0}")
for s in all_sets:
print(
f" {chemical_set[s][0]} = {solver.value(set_vars[s]) / 1000.0}",
end=" ",
)
print()
for p in all_products:
name = max_quantities[p][0]
max_quantity = max_quantities[p][1]
quantity = sum(
solver.value(set_vars[s]) / 1000.0 * chemical_set[s][p + 1]
for s in all_sets
)
print(f"{name}: {quantity:.3f} out of {max_quantity}")
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
chemical_balance()
if __name__ == "__main__":
app.run(main)