-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
LinearProgramming.java
122 lines (104 loc) · 4.85 KB
/
LinearProgramming.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.ortools.java;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
/**
* Linear programming example that shows how to use the API.
*
*/
public class LinearProgramming {
private static void runLinearProgrammingExample(String solverType, boolean printModel) {
MPSolver solver = MPSolver.createSolver(solverType);
if (solver == null) {
System.out.println("Could not create solver " + solverType);
return;
}
double infinity = java.lang.Double.POSITIVE_INFINITY;
// x1, x2 and x3 are continuous non-negative variables.
MPVariable x1 = solver.makeNumVar(0.0, infinity, "x1");
MPVariable x2 = solver.makeNumVar(0.0, infinity, "x2");
MPVariable x3 = solver.makeNumVar(0.0, infinity, "x3");
// Maximize 10 * x1 + 6 * x2 + 4 * x3.
MPObjective objective = solver.objective();
objective.setCoefficient(x1, 10);
objective.setCoefficient(x2, 6);
objective.setCoefficient(x3, 4);
objective.setMaximization();
// x1 + x2 + x3 <= 100.
MPConstraint c0 = solver.makeConstraint(-infinity, 100.0);
c0.setCoefficient(x1, 1);
c0.setCoefficient(x2, 1);
c0.setCoefficient(x3, 1);
// 10 * x1 + 4 * x2 + 5 * x3 <= 600.
MPConstraint c1 = solver.makeConstraint(-infinity, 600.0);
c1.setCoefficient(x1, 10);
c1.setCoefficient(x2, 4);
c1.setCoefficient(x3, 5);
// 2 * x1 + 2 * x2 + 6 * x3 <= 300.
MPConstraint c2 = solver.makeConstraint(-infinity, 300.0);
c2.setCoefficient(x1, 2);
c2.setCoefficient(x2, 2);
c2.setCoefficient(x3, 6);
System.out.println("Number of variables = " + solver.numVariables());
System.out.println("Number of constraints = " + solver.numConstraints());
if (printModel) {
String model = solver.exportModelAsLpFormat();
System.out.println(model);
}
final MPSolver.ResultStatus resultStatus = solver.solve();
// Check that the problem has an optimal solution.
if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
System.err.println("The problem does not have an optimal solution!");
return;
}
// Verify that the solution satisfies all constraints (when using solvers
// others than GLOP_LINEAR_PROGRAMMING, this is highly recommended!).
if (!solver.verifySolution(/*tolerance=*/1e-7, /* log_errors= */ true)) {
System.err.println("The solution returned by the solver violated the"
+ " problem constraints by at least 1e-7");
return;
}
System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");
// The objective value of the solution.
System.out.println("Optimal objective value = " + solver.objective().value());
// The value of each variable in the solution.
System.out.println("x1 = " + x1.solutionValue());
System.out.println("x2 = " + x2.solutionValue());
System.out.println("x3 = " + x3.solutionValue());
final double[] activities = solver.computeConstraintActivities();
System.out.println("Advanced usage:");
System.out.println("Problem solved in " + solver.iterations() + " iterations");
System.out.println("x1: reduced cost = " + x1.reducedCost());
System.out.println("x2: reduced cost = " + x2.reducedCost());
System.out.println("x3: reduced cost = " + x3.reducedCost());
System.out.println("c0: dual value = " + c0.dualValue());
System.out.println(" activity = " + activities[c0.index()]);
System.out.println("c1: dual value = " + c1.dualValue());
System.out.println(" activity = " + activities[c1.index()]);
System.out.println("c2: dual value = " + c2.dualValue());
System.out.println(" activity = " + activities[c2.index()]);
}
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
System.out.println("---- Linear programming example with GLOP (recommended) ----");
runLinearProgrammingExample("GLOP", true);
System.out.println("---- Linear programming example with CLP ----");
runLinearProgrammingExample("CLP", false);
System.out.println("---- Linear programming example with XPRESS ----");
runLinearProgrammingExample("XPRESS_LP", false);
}
}