-
Notifications
You must be signed in to change notification settings - Fork 80
/
run_util.py
137 lines (116 loc) · 4.74 KB
/
run_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2022 The ML Fairness Gym Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Utilities for running and measuring gym simulations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
import gin
import tqdm
FLAGS = flags.FLAGS
flags.DEFINE_boolean("use_tqdm", True,
"Use tqdm to visually represent progress in simulations.")
@gin.configurable
def run_simulation(env, agent, metrics, num_steps, seed=100, agent_seed=50):
"""Perform a simple simulation and return a measurement.
Args:
env: A `core.FairnessEnv`.
agent: A `core.Agent`.
metrics: A list of `core.Metric` instances, a dict of {name: `core.Metric`}
or a single `core.Metric` instance.
num_steps: An integer indicating the number of steps to simulate in each
episode.
seed: An integer indicating a random seed.
agent_seed: An integer indicating a random seed for the agent.
Returns:
A list of measurements if multiple metrics else a single measurement for a
single metric.
"""
agent.seed(agent_seed)
env.seed(seed)
observation = env.reset()
done = False
print("Starting simulation")
simulation_iterator = tqdm.trange if FLAGS.use_tqdm else range
for _ in simulation_iterator(num_steps):
# Update the agent with any changes to the observation or action space.
agent.action_space, agent.observation_space = (env.action_space,
env.observation_space)
action = agent.act(observation, done)
# TODO(): Remove reward from this loop.
observation, _, done, _ = env.step(action)
if done:
break
print("Measuring metrics")
if isinstance(metrics, list):
return [metric.measure(env) for metric in metrics]
elif isinstance(metrics, dict):
return {name: metric.measure(env) for name, metric in metrics.items()}
else:
return metrics.measure(env)
@gin.configurable
def run_stackelberg_simulation(env,
agent,
metrics,
num_steps,
seed=100,
agent_seed=100):
"""Performs a Stackelberg simulation.
A Stackelberg Simulation involves a two player game between a Jury (Agent) and
Contestants (Environment's population). In this setup the game proceeds as
follows:
1. Agent Publishes a classifier
2. Contestants manipualte features to game the classifier
3. Agent receives manipulated features and makes decision
4. Environment receives agent's decision and calculates penalties/reward.
In this case, we have folded steps 2, 3, 4 into the environment, where once
the agent publishes its classifier, the feature manipulation, classification
and reward calculation is done in one step in the environment.
Args:
env: A `core.FairnessEnv`.
agent: A `core.Agent`.
metrics: A list of `core.Metric` instances, a dict of {name: `core.Metric`}
or a single `core.Metric` instance.
num_steps: An integer indicating the numnber of steps to simulate.
seed: An integer indicating a random seed.
agent_seed: An integer indicating a random seed for the agent.
Returns:
A list of measurements if multiple metrics else a single measurement.
"""
env.seed(seed)
agent.seed(agent_seed)
_ = env.reset()
agent.action_space = env.action_space
action = agent.initial_action()
done = False
print("Starting simulation")
simulation_iterator = tqdm.trange if FLAGS.use_tqdm else range
for _ in simulation_iterator(num_steps):
# TODO(): Remove reward from this loop.
observation, _, done, _ = env.step(action)
# Update the agent with any changes to the observation or action space.
agent.action_space, agent.observation_space = (env.action_space,
env.observation_space)
action = agent.act(observation, done)
if done:
break
print("Measuring metrics")
if isinstance(metrics, list):
return [metric.measure(env) for metric in metrics]
elif isinstance(metrics, dict):
return {name: metric.measure(env) for name, metric in metrics.items()}
else:
return metrics.measure(env)