This repository has been archived by the owner on Dec 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
fingerprint_store.cc
395 lines (336 loc) · 15.7 KB
/
fingerprint_store.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: fingerprint_store.cc
// -----------------------------------------------------------------------------
#include "fingerprint_store.h"
#include <iostream>
#include "absl/strings/str_cat.h"
#include "common/bitmap.h"
#include "common/rle_bitmap.h"
#include "cuckoo_utils.h"
namespace ci {
constexpr size_t kEmptyBucketsBlockMarker = 999;
Block::Block(const size_t num_bits, const std::vector<uint64_t>& fingerprints)
: num_bits_(num_bits), num_fingerprints_(fingerprints.size()) {
// Write to a ByteBuffer.
ByteBuffer result;
// Needed to re-construct original fingerprints since the bit width in
// bitpacked format could be smaller.
PutVarint32(num_bits, &result);
// No need to encode `num_fingerprints`. Can be reconstructed from
// `block_bitmap` in FingerprintStore.
const uint32_t bit_width =
MaxBitWidth<uint64_t>(absl::MakeConstSpan(fingerprints));
if (bit_width > num_bits) {
std::cerr << "Maximum bit width is " << bit_width
<< ", but expected at most " << num_bits << " bits.";
std::exit(-1);
}
PutVarint32(bit_width, &result);
const size_t fingerprints_pos = result.pos();
StoreBitPacked<uint64_t>(fingerprints, bit_width, &result);
// Note: We could avoid multiple slop bytes by storing all blocks
// consecutively.
PutSlopBytes(&result);
// Copy the serialized encoding to the string `data_`.
data_ = std::string(result.data(), result.pos());
// Set BitPackedReader.
fingerprints_ =
BitPackedReader<uint64_t>(bit_width, data_.data() + fingerprints_pos);
}
void FingerprintStore::Decode(const std::string& data) {
// TODO: Make method return FingerprintStore + implement decode.
}
FingerprintStore::FingerprintStore(const std::vector<Fingerprint>& fingerprints,
const size_t slots_per_bucket,
const bool use_rle_to_encode_block_bitmaps)
: num_slots_(fingerprints.size()),
slots_per_bucket_(slots_per_bucket),
use_rle_to_encode_block_bitmaps_(use_rle_to_encode_block_bitmaps) {
assert((fingerprints.size() % slots_per_bucket_) == 0);
if (slots_per_bucket_ > 1) {
// Check that all fingerprints in a bucket share the same length.
assert(CheckWhetherAllBucketsOnlyContainSameSizeFingerprints(
fingerprints, slots_per_bucket_));
// << "All fingerprints in a bucket need to share the same length.";
}
// Mark empty slots in `empty_slots_bitmap_`.
empty_slots_bitmap_ =
absl::make_unique<Bitmap64>(/*size=*/fingerprints.size());
for (size_t i = 0; i < fingerprints.size(); ++i) {
if (!fingerprints[i].active) empty_slots_bitmap_->Set(i, true);
}
empty_slots_bitmap_->InitRankLookupTable();
num_stored_fingerprints_ = empty_slots_bitmap_->GetZeroesCount();
// Build a map from fingerprint length to BlockContent.
absl::flat_hash_map<size_t, BlockContent> blocks;
// Create a special block `empty_buckets_block`. The purpose of this "virtual"
// block is to simplify the lookup logic. An alternative lookup implementation
// without this block would need to do a "per-empty bucket rank" on the
// `empty_slots_bitmap_`. Since this auxiliary block can be re-constructed
// from the `empty_slots_bitmap_` at any time, we only maintain it at runtime
// and do not serialize it later on.
BlockContent& empty_buckets_block = blocks[kEmptyBucketsBlockMarker];
empty_buckets_block.block_bitmap =
GetEmptyBucketsBitmap(*empty_slots_bitmap_, slots_per_bucket_);
// Add fingerprints to their corresponding block.
for (size_t i = 0; i < fingerprints.size(); ++i) {
const Fingerprint& fp = fingerprints[i];
if (!fp.active) continue;
BlockContent& block = blocks[fp.num_bits];
if (block.block_bitmap == nullptr)
block.block_bitmap = absl::make_unique<Bitmap64>(
/*size=*/fingerprints.size() / slots_per_bucket_);
block.block_bitmap->Set(i / slots_per_bucket_, true);
block.fingerprints.push_back(
GetFingerprintSuffix(fp.fingerprint, fp.num_bits));
}
// Build a permutation vector `lengths` that orders blocks based on decreasing
// cardinality to allow for smaller block bitmaps.
std::vector<size_t> lengths;
lengths.reserve(blocks.size());
for (const auto& [num_bits, _] : blocks) lengths.push_back(num_bits);
std::function<bool(size_t, size_t)> comparator = [&](size_t length,
size_t other_length) {
// Keep "empty block" in front to allow for simple re-construction from
// `empty_slots_bitmap_`. The effect of this is that the empty block bitmap
// will not be "compacted" in CreateAndCompactBlockBitmaps() below (the
// first block bitmap is never compacted).
if (length == kEmptyBucketsBlockMarker) return true;
if (other_length == kEmptyBucketsBlockMarker) return false;
// Order other blocks based on decreasing cardinality.
return blocks[length].block_bitmap->GetOnesCount() >
blocks[other_length].block_bitmap->GetOnesCount();
};
std::sort(lengths.begin(), lengths.end(), comparator);
// Allocate one block per fingerprint length.
for (const size_t length : lengths) {
blocks_.push_back(
absl::make_unique<Block>(length, blocks[length].fingerprints));
}
CreateAndCompactBlockBitmaps(lengths, &blocks);
PrintStats();
}
Fingerprint FingerprintStore::GetFingerprint(const size_t slot_idx) const {
assert(slot_idx < empty_slots_bitmap_->bits());
if (empty_slots_bitmap_->Get(slot_idx)) {
// Slot is empty. Return dummy.
return Fingerprint{.active = false};
}
const size_t bucket_idx = slot_idx / slots_per_bucket_;
// Search blocks for fingerprint.
size_t idx_in_compacted_bitmap = bucket_idx;
for (size_t block_idx = 0; block_idx < blocks_.size(); ++block_idx) {
const Bitmap64Ptr& block_bitmap = block_bitmaps_[block_idx];
const BlockPtr& block = blocks_[block_idx];
if (block_idx > 0) {
// Map `bucket_idx` to index in compacted block bitmap. Re-use
// `idx_in_compacted_bitmap` across loop iterations, i.e., only map it
// from one block bitmap to the next.
idx_in_compacted_bitmap -=
GetRank(*(block_bitmaps_[block_idx - 1]), idx_in_compacted_bitmap);
}
// Fingerprint can't be part of "empty buckets block" (this case is already
// taken care of by checking `empty_slots_bitmap_` above).
if (block->num_bits() == kEmptyBucketsBlockMarker) continue;
if (block_bitmap->Get(idx_in_compacted_bitmap)) {
// Block `block_idx` contains fingerprints of bucket `bucket_idx`.
const size_t idx_in_block = GetIndexOfFingerprintInBlock(
block_idx, idx_in_compacted_bitmap, slot_idx);
return Fingerprint{/*active=*/true, block->num_bits(),
/*fingerprint=*/block->Get(idx_in_block)};
}
}
// Unreachable.
std::cerr << "Couldn't find block for slot_idx " << slot_idx;
std::exit(1);
}
std::string FingerprintStore::Encode(bool bitmaps_only) const {
ByteBuffer result;
// Encode number of blocks.
const uint32_t num_blocks = blocks_.size();
PutVarint32(num_blocks, &result);
// ** Bitmaps.
// Encode num bits of `empty_slots_bitmap_`.
PutVarint32(empty_slots_bitmap_->bits(), &result);
// Encode `empty_slots_bitmap_`.
if (use_rle_to_encode_block_bitmaps_) {
const RleBitmap rle_bitmap(*empty_slots_bitmap_);
PutString(rle_bitmap.data(), &result);
} else {
std::string bitmap_encoded;
Bitmap64::DenseEncode(*empty_slots_bitmap_, &bitmap_encoded);
PutString(bitmap_encoded, &result);
}
// Encode block bitmaps, except "empty buckets block" which can be
// re-constructed from `empty_slots_bitmap_` using
// cuckoo_utils.h:GetEmptyBucketsBitmap(..).
std::vector<Bitmap64Ptr> block_bitmaps_without_empty_block;
for (size_t i = 0; i < block_bitmaps_.size(); ++i) {
if (blocks_[i]->num_bits() == kEmptyBucketsBlockMarker) continue;
const Bitmap64Ptr& curr_bitmap = block_bitmaps_[i];
Bitmap64Ptr new_bitmap = absl::make_unique<Bitmap64>(curr_bitmap->bits());
for (const size_t bit : curr_bitmap->TrueBitIndices())
new_bitmap->Set(bit, true);
block_bitmaps_without_empty_block.push_back(std::move(new_bitmap));
}
// Encode num bits of block bitmaps.
for (size_t i = 0; i < block_bitmaps_without_empty_block.size(); ++i)
PutVarint32(block_bitmaps_without_empty_block[i]->bits(), &result);
// Encode block bitmaps.
const Bitmap64 global_bitmap =
Bitmap64::GetGlobalBitmap(block_bitmaps_without_empty_block);
if (use_rle_to_encode_block_bitmaps_) {
const RleBitmap rle_bitmap(global_bitmap);
PutString(rle_bitmap.data(), &result);
} else {
std::string bitmap_encoded;
Bitmap64::DenseEncode(global_bitmap, &bitmap_encoded);
PutString(bitmap_encoded, &result);
}
std::string encoded(result.data(), result.pos());
if (!bitmaps_only) {
// Encode blocks.
for (const BlockPtr& block : blocks_)
absl::StrAppend(&encoded, block->GetData());
}
return encoded;
}
void FingerprintStore::PrintStats() const {
for (size_t i = 0; i < blocks_.size(); ++i) {
std::cout << "block " << i << ": bits: " << blocks_[i]->num_bits()
<< ", buckets: " << block_bitmaps_[i]->GetOnesCount()
<< std::endl;
}
std::cout << "GetSizeInBytes(bitmaps_only = false): "
<< GetSizeInBytes(/*bitmaps_only=*/false) << std::endl;
std::cout << "GetBitsPerFingerprint(bitmaps_only = false): "
<< GetBitsPerFingerprint(/*bitmaps_only=*/false) << std::endl;
std::cout << "GetZstdCompressedSizeInBytes(bitmaps_only = false): "
<< GetZstdCompressedSizeInBytes(/*bitmaps_only=*/false)
<< std::endl;
std::cout << "GetBitsPerFingerprintZstdCompressed(bitmaps_only = false): "
<< GetBitsPerFingerprintZstdCompressed(/*bitmaps_only=*/false)
<< std::endl;
std::cout << "GetSizeInBytes(bitmaps_only = true): "
<< GetSizeInBytes(/*bitmaps_only=*/true) << std::endl;
std::cout << "GetBitsPerFingerprint(bitmaps_only = true): "
<< GetBitsPerFingerprint(/*bitmaps_only=*/true) << std::endl;
std::cout << "GetZstdCompressedSizeInBytes(bitmaps_only = true): "
<< GetZstdCompressedSizeInBytes(/*bitmaps_only=*/true) << std::endl;
std::cout << "GetBitsPerFingerprintZstdCompressed(bitmaps_only = true): "
<< GetBitsPerFingerprintZstdCompressed(/*bitmaps_only=*/true)
<< std::endl;
}
size_t FingerprintStore::GetBucketIndex(const size_t block_idx,
const size_t bit_idx) const {
size_t pos = bit_idx;
for (int i = block_idx - 1; i >= 0; --i) {
if (!SelectZero(*(block_bitmaps_[i]), pos, &pos)) {
std::cerr << "Insufficient number of zeros in block bitmap " << i
<< std::endl;
exit(EXIT_FAILURE);
}
}
return pos;
}
size_t FingerprintStore::GetNumItemsInBucket(const size_t bucket_idx) const {
size_t count = 0;
const size_t first_slot_idx = bucket_idx * slots_per_bucket_;
assert(first_slot_idx + slots_per_bucket_ <= empty_slots_bitmap_->bits());
for (size_t i = first_slot_idx; i < first_slot_idx + slots_per_bucket_; ++i)
count += !empty_slots_bitmap_->Get(i);
return count;
}
size_t FingerprintStore::GetIndexOfFingerprintInBlock(
const size_t block_idx, const size_t idx_in_compacted_bitmap,
const size_t slot_idx) const {
assert(block_idx < block_bitmaps_.size());
const Bitmap64Ptr& block_bitmap = block_bitmaps_[block_idx];
assert(idx_in_compacted_bitmap < block_bitmap->bits());
// For one slot per bucket, the index is simply the rank of
// `idx_in_compacted_bitmap` in the block bitmap `block_idx`.
if (slots_per_bucket_ == 1)
return GetRank(*block_bitmap, idx_in_compacted_bitmap);
// For multiple slots per bucket, we need to perform a few extra steps (these
// are required since we only maintain one bit per bucket in the block bitmaps
// and we need to account for empty slots in prior buckets that are stored in
// the same block, i.e., have the same fingerprint length):
// (1) For each set bit in `block_bitmap` up to (exclusive) bit
// `idx_in_compacted_bitmap`, we determine the corresponding bucket (we
// essentially partially "de-compact" the block bitmaps in this step).
// (2) We count the number occupied slots in these buckets (=> `count`).
size_t count = 0;
for (const size_t bit_idx : block_bitmap->TrueBitIndices()) {
if (bit_idx >= idx_in_compacted_bitmap) break;
const size_t corr_bucket_idx = GetBucketIndex(block_idx, bit_idx); // (1)
count += GetNumItemsInBucket(corr_bucket_idx); // (2)
}
// (3) We count the number of empty slots in the bucket `slot_idx /
// slots_per_bucket` up to (exclusive) `slot_idx`.
const size_t bucket_idx = slot_idx / slots_per_bucket_;
const size_t first_slot_in_bucket = bucket_idx * slots_per_bucket_;
size_t num_empty_slots = 0;
for (size_t i = first_slot_in_bucket; i < slot_idx; ++i) // (3)
num_empty_slots += empty_slots_bitmap_->Get(i);
// (4) The fingerprint is at offset `count` - `num_empty_slots` + (`slot_idx`
// mod `slots_per_bucket_`).
return count - num_empty_slots + (slot_idx % slots_per_bucket_); // (4)
}
size_t FingerprintStore::MapBucketIndexToBitInBlockBitmap(
const size_t bucket_idx, const size_t block_bitmap_idx) const {
assert(block_bitmap_idx <= block_bitmaps_.size());
size_t curr_idx = bucket_idx;
// Keep subtracting curr_bitmap.Rank(curr_idx) from `curr_idx`. In one
// iteration, we map `curr_idx` (which corresponds to a bit in the current
// bitmap) to its index (bit) in the next bitmap. We continue this procedure
// up to (exclusive) the bitmap at `block_bitmap_idx`.
for (size_t i = 0; i < block_bitmap_idx; ++i) {
const Bitmap64Ptr& curr_bitmap = block_bitmaps_[i];
const size_t rank = GetRank(*curr_bitmap, curr_idx);
assert(curr_idx >= rank);
curr_idx -= rank;
}
return curr_idx;
}
void FingerprintStore::CreateAndCompactBlockBitmaps(
const std::vector<size_t>& lengths,
absl::flat_hash_map<size_t, BlockContent>* blocks) {
// Create block bitmap for first block (which cannot be compacted).
if (!lengths.empty()) {
Bitmap64Ptr& first_block_bitmap = (*blocks)[lengths[0]].block_bitmap;
first_block_bitmap->InitRankLookupTable();
block_bitmaps_.push_back(std::move(first_block_bitmap));
}
// Create and compact block bitmaps for all remaining blocks.
for (size_t i = 1; i < lengths.size(); ++i) {
const size_t length = lengths[i];
const Bitmap64Ptr& curr_bitmap = (*blocks)[length].block_bitmap;
const size_t num_bits_compacted_bitmap =
block_bitmaps_.back()->GetZeroesCount();
Bitmap64Ptr compacted_bitmap =
absl::make_unique<Bitmap64>(/*size=*/num_bits_compacted_bitmap);
for (const size_t bucket_idx : curr_bitmap->TrueBitIndices()) {
// Map `bucket_idx` to index in compacted block bitmap.
const size_t idx_in_compacted_bitmap =
MapBucketIndexToBitInBlockBitmap(bucket_idx, block_bitmaps_.size());
compacted_bitmap->Set(idx_in_compacted_bitmap, true);
}
compacted_bitmap->InitRankLookupTable();
block_bitmaps_.push_back(std::move(compacted_bitmap));
}
}
} // namespace ci