show | version | enable_checker |
---|---|---|
step |
1.0 |
true |
- 什么是 转义?
- 转义转义 转化含义
\
是 转义字符\n
、\r
是 转义序列
- 还有什么 转义序列 吗?
\a
是 响铃\b
退格键\t
水平制表符 tab键\v
、\f
实现喂纸不回车
- 通过 16进制数值 转义
\xhh
- 输出 (
hh
)16进制
对应的ascii
字符
- 如果我们不输入
x
- 会发生什么呢?
- 为什么会输出
S
呢?🤔
- 查询主题
STRINGS
- 表示方法
- \xhh 是
16进制
表示方法 - \ooo 是
8进制
表示方法
- \xhh 是
- 去试试
- "\x61"
- 61 是两个十六进制数
- "\x61" 也就是 "\xhh"
- 16进制表示法 没有问题
- 那 8进制 呢?
- 有没有 求八进制值的函数 呢?
- 就像 hex 、 bin
- oct 就是 求八进制值的函数
- 返回的 是
- 八进制形式的 字符串
- "\141"
- 141 在这里是 八进制数
- "\141" 就是 "\ooo"
- 确实可以
- 用 3位 八进制数 表示字符
\141
- 123 为什么 对应
S
呢?
- S 的序号 是83
- 83 对应的 八进制数 是
0o123
- 0 代表这是个 数字 - o 代表 oct- 八进制
- 为什么 oct 代表八进制呢?
- oct来源
- eight 和 oct 同源
- 就如同
- ten 和 decimal
- two 和 binary
- 八只脚 的 章鱼 🐙
- 章鱼也叫八爪鱼(octopus)
- 八度音阶
- 俗称的 八度音
- 高八度
- 低八度
- octave
- october 是
- 罗慕路斯(Romulus)历法中的
- 八月
- 罗慕路斯 是 在七个山丘上
- 创建罗马 的 弟弟
- 罗慕路斯(Romulus)历法中的
- 有什么证据吗?
月份 | 数字 | 词根 | 单词 |
---|---|---|---|
7 | seven | septem- | september |
8 | eight | octo- | october |
9 | nine | novem- | november |
10 | ten(decimal) | decem- | december |
- 只有 304天
- 剩下的61天 太冷了
- 也没农活
- 不 需要记忆
- 庞贝留斯在年底 加了两个月
- Ianuarius
- Februarius
- 仔细看 首行的 月份
- 凯撒历
- Julian Calendar
- 凯撒 把 新加的两个月 放到年初
- 一月大月 31天
- 二月小月 28天
- 后人把
- Quintilis 改成 July
- 纪念 Julius Caesar
- 尤里乌斯·凯撒
- 纪念 Julius Caesar
- Sextilis 改成 Augustus
- 纪念 Octavius Augustus
- 屋大维·奥古斯都
- 纪念 Octavius Augustus
- Quintilis 改成 July
- 屋大维 和 八
- 还真的是 有缘
- 我们中国和八更有缘
- 这就是 传统八卦
- 三个爻 每个都是二进制
- 八个卦 什么都可以联系在一起
- 三八也代表 生发之象
- 真的可以用三位八进制数表示
字符
吗?
- 真的可以用三位八进制数表示
- 可以观察到
0o41
对应字符!
\041
和\41
都可以- 表示 这个字符
!
- 表示 这个字符
- 那么
- 问题来了
- "\123"究竟
- 是 "\12" + "3" 呢?
- 还是 "\123" 呢?
- 以 "\n" 为切入点
- (0A)16进制
- (10)10进制
- (12)8进制
- 想先把 前两个字符(01)
- 当做一个整体 来转义
- 而不是 以前三个(012)
- 来 转义 呢?
- 想先把 前两个字符(01)
- 如果 直接输出
\121
- 结果是
Q
0o121
对应着0x51
- 结果是
-
如果 直接输出
\12
- 可以输出换行符
-
如果我就想
- 用 8进制 输出换行符
- 并且 后面 加一个字符
1
呢?
- 明确 是 两个字符
- 给 前面的
\12
- 前面补
0
- 修改为
\012
- 前面补
- 两种方法 都可以
- 不过 第二种
- 去除歧义的能力 更强
- 不过 第二种
- 回忆一下 进制
-
这次研究了
- 通过 八进制数值 转义
\ooo
- 把(
ooo
)8进制
对应的ascii
字符输出
- 通过 八进制数值 转义
-
转义序列
\n
、\t
是 转义序列\xhh
也是 转义序列\ooo
还是 转义序列
- 现在 总共有
几
种进制 了呢?🤔
- 下次总结一下!👋