-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfa.py
501 lines (397 loc) · 16.1 KB
/
fa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import math
from enum import Enum
from dataclasses import dataclass
from visualiser import visualise_game_state
from visualiser import Action
import numpy as np
import matplotlib.pyplot as plt
# actions import from visualiser:
# F = forward L meters
# B = backward L meters
# R = move right L meters
# L = move left L meters
# Encircle(p, d) = encircle point p in d direction
class Direction(Enum):
CW = 0
CCW = 1
# The task of the USV is to (Assume animal positions are known and given):
# 1) encircle the platypus (P) CW
# 2) encircle the turtle (T) CCW
# 3) remain 10m away from the crocodile (C)
@dataclass
class GameState:
start_pos: tuple # (x, y) start position of USV
usv_dims: tuple # (width, height) of USV
P: tuple # (x, y) position of platypus
T: tuple # (x, y) position of turtle
C: tuple # (x, y) position of crocodile
grid_length: int # length of grid
move_time: float # time to move 1 grid length
circle_time: float # time to encircle 1m
time_limit: float # time limit for episode
time: float # time elapsed so far
@dataclass
class State:
pos: tuple # (x, y) position of USV
P: bool # True if encircled
T: bool # True if encircled
C: bool # True if > 10m away so far
time: float # time elapsed so far
# rewards:
# -1 for each time step
# +30 for encircling platypus (if not collided with animal)
# +30 for encircling turtle (if not collided with animal)
# +30 for staying > 10m away from crocodile (at the end of the episode)
def pseudo_vrx_score(x, y, ae, game_state: GameState):
reward = 0
reward -= game_state.time
P, T, C = get_animal_decoding(ae)
if P:
reward += 30
if T:
reward += 30
time_exceeded = (x + y) >= game_state.time_limit
game_over = (P and T) or time_exceeded
if game_over and C:
reward += 30
return reward
# coord convention:
# y
# |
# ---> x
def will_collide(x, y, game_state: GameState, action: Action, pc: tuple = None):
#
# radius = inner_radius = outer_radius = bottom_y = top_y = left_x = right_x = 0
def encircle_movement_check():
radius = math.sqrt((x - pc[0])**2 + (y - pc[1])**2)
inner_radius = radius - game_state.usv_dims[1]/2
outer_radius = radius + game_state.usv_dims[1]/ 2
return lambda animal_pos : \
inner_radius <= math.sqrt((animal_pos[0] - pc[0])**2 + (animal_pos[1] - pc[1])**2) <= outer_radius
def pos_movement_check():
bottom_y = y - game_state.usv_dims[1]/2
top_y = y + game_state.usv_dims[1]/2
left_x = x - game_state.usv_dims[0]/2
right_x = x + game_state.usv_dims[0]/2
if action == Action.F:
top_y += game_state.grid_length
elif action == Action.B:
bottom_y -= game_state.grid_length
elif action == Action.R:
right_x += game_state.grid_length
elif action == Action.L:
left_x -= game_state.grid_length
return lambda animal_pos : \
bottom_y <= animal_pos[1] <= top_y and \
left_x <= animal_pos[0] <= right_x
if action == Action.Encircle:
movement_check = encircle_movement_check()
else:
movement_check = pos_movement_check()
for animal_pos in [game_state.P, game_state.T, game_state.C]:
if movement_check(animal_pos):
return True
def position_encircled(usv_pos: tuple, circle_pos: tuple, test_pos: tuple):
radius = (usv_pos[0] - circle_pos[0])**2 + (usv_pos[1] - circle_pos[1])**2
return (test_pos[0] - circle_pos[0])**2 + (test_pos[1] - circle_pos[1])**2 <= radius
def get_animal_encoding(P: bool, T: bool, C: bool):
pv = 1 if P else 0
tv = 1 if T else 0
cv = 1 if C else 0
return pv * 4 + tv * 2 + cv
def get_animal_decoding(encoding: int):
P = encoding // 4 == 1
encoding %= 4
T = encoding // 2 == 1
encoding %= 2
C = encoding == 1
return (P, T, C)
def next_state(x, y, ae, a, gs: GameState):
new_x, new_y = x, y
action, pc, dir = a
new_P, new_T, new_C = get_animal_decoding(ae)
if action == Action.Encircle:
if position_encircled((x, y), pc, gs.P) and dir == Direction.CW:
new_P = True
if position_encircled((x, y), pc, gs.T) and dir == Direction.CCW:
new_T = True
pc_to_croc = math.sqrt((pc[0] - gs.C[0])**2 + (pc[1] - gs.C[1])**2)
pc_to_usv = math.sqrt((pc[0] - x)**2 + (pc[1] - y)**2)
if pc_to_croc - pc_to_usv < 10:
new_C = False
else:
if action == Action.F:
new_y += gs.grid_length
elif action == Action.B:
new_y -= gs.grid_length
elif action == Action.R:
new_x += gs.grid_length
elif action == Action.L:
new_x -= gs.grid_length
usv_to_croc = (new_x - gs.C[0])**2 + (new_y - gs.C[1])**2
if usv_to_croc < 100:
new_C = False
return (new_x, new_y, get_animal_encoding(new_P, new_T, new_C))
# does not perform validation. only use actions from available_actions
def reward(x, y, ae, a, gs: GameState):
delta_reward = 0
action, pc, _ = a
P, T, C = get_animal_decoding(ae)
new_x, new_y, new_ae = next_state(x, y, ae, a, gs)
new_P, new_T, new_C = get_animal_decoding(new_ae)
if action == Action.F or action == Action.B or action == Action.R or action == Action.L:
delta_reward -= gs.move_time * 0.8
else:
# action is encircle
twopir = 2 * math.pi * math.sqrt((x - pc[0])**2 + (y - pc[1])**2)
delta_reward -= twopir * gs.circle_time
if new_P and not P:
delta_reward += 30
if new_T and not T:
delta_reward += 30
if new_P and new_T and (not P or not T):
delta_reward += 0
if not new_C and C:
delta_reward -= 30
return (delta_reward, (new_x, new_y, new_ae))
def available_actions(x, y, game_state: GameState, lb, rb, bb, tb):
actions = []
curr_pos = (x, y)
def in_bounds(x, y):
return lb <= x <= rb and bb <= y <= tb
# check if moving is possible
if not will_collide(x, y, game_state, Action.F):
x = curr_pos[0]
y = curr_pos[1] + game_state.grid_length
if in_bounds(x, y):
actions.append((Action.F, None, None))
if not will_collide(x, y, game_state, Action.B):
x = curr_pos[0]
y = curr_pos[1] - game_state.grid_length
if in_bounds(x, y):
actions.append((Action.B, None, None))
if not will_collide(x, y, game_state, Action.R):
x = curr_pos[0] + game_state.grid_length
y = curr_pos[1]
if in_bounds(x, y):
actions.append((Action.R, None, None))
if not will_collide(x, y, game_state, Action.L):
x = curr_pos[0] - game_state.grid_length
y = curr_pos[1]
if in_bounds(x, y):
actions.append((Action.L, None, None))
if not will_collide(x, y, game_state, Action.Encircle, game_state.P):
actions.append((Action.Encircle, game_state.P, Direction.CW))
actions.append((Action.Encircle, game_state.P, Direction.CCW))
if not will_collide(x, y, game_state, Action.Encircle, game_state.T):
actions.append((Action.Encircle, game_state.T, Direction.CW))
actions.append((Action.Encircle, game_state.T, Direction.CCW))
return actions
def get_vi_utilities(game_state: GameState):
# actions should be appended to a list according to planner
left_bound = int(min(0, game_state.P[0], game_state.T[0], game_state.C[0])) - 2
right_bound = int(max(0, game_state.P[0], game_state.T[0], game_state.C[0])) + 2
bottom_bound = int(min(0, game_state.P[1], game_state.T[1], game_state.C[1])) - 2
top_bound = int(max(0, game_state.P[1], game_state.T[1], game_state.C[1])) + 2
def idx(x):
return (x - left_bound) // game_state.grid_length
def idy(y):
return (y - bottom_bound) // game_state.grid_length
print(left_bound, right_bound, bottom_bound, top_bound)
# precompute actions
pre_actions = { (x, y) : available_actions(x, y, game_state, left_bound, right_bound, bottom_bound, top_bound) for
x in range(left_bound, right_bound + 1, game_state.grid_length) for
y in range(bottom_bound, top_bound + 1, game_state.grid_length) }
WIDTH = len(range(left_bound, right_bound + 1, game_state.grid_length))
HEIGHT = len(range(bottom_bound, top_bound + 1, game_state.grid_length))
# perform value iteration
value_policy = np.zeros((WIDTH, HEIGHT, 8))
for x in range(left_bound, right_bound + 1, game_state.grid_length):
for y in range(bottom_bound, top_bound + 1, game_state.grid_length):
for s in range(8):
value_policy[idx(x)][idy(y)][s] = 0 # pseudo_vrx_score(x, y, s, game_state)
max_iter = 10000
gamma = 1
# value iteration
for i in range(max_iter):
delta = 0
for x in range(left_bound, right_bound + 1, game_state.grid_length):
for y in range(bottom_bound, top_bound + 1, game_state.grid_length):
for s in range(8):
new_v = -10 # value_policy[idx(x)][idy(y)][s]
actions = pre_actions[x, y]
P, T, _ = get_animal_decoding(s)
if P and T:
continue
for a in actions:
delta_reward, new_state = reward(x, y, s, a, game_state)
new_v = max(new_v, delta_reward + gamma * value_policy[idx(new_state[0])][idy(new_state[1])][new_state[2]])
delta = max(delta, abs(new_v - value_policy[idx(x)][idy(y)][s]))
value_policy[idx(x)][idy(y)][s] = new_v
print (i, delta)
if delta < 0.01:
break
return value_policy
def main():
game_state = GameState(
start_pos = (0, 0),
usv_dims = (1, 1),
# case 1
# P = (0, 10),
# T = (10, 0),
# C = (15, 15),
# case 2
# P = (0, 30),
# T = (15, 15),
# C = (0, 15),
# case 3
P = (39, 39),
T = (10, 10),
C = (30, 30),
# case 4
# P = (-7, 15),
# T = (15, 15),
# C = (0, 15),
# case 5
# P = (-7, 15),
# T = (7, 15),
# C = (0, 15),
grid_length = 1,
time_limit = 100,
move_time = 1,
circle_time = 1,
time = 0
)
#####################
# Utility heatmap
# utility_values = np.zeros((WIDTH, HEIGHT))
# for x in range(value_policy.shape[0]):
# for y in range(value_policy.shape[1]):
# # Assume s=0 for simplicity. Change this if you have different states.
# utility_values[x][y] = value_policy[x][y][1]
# utility_values = np.transpose(utility_values)
# plt.imshow(utility_values, cmap='hot', interpolation='nearest', origin='lower')
# plt.colorbar(label='Utility values')
# plt.show()
#####################
# potentials heatmap
game_state = game_state
left_bound = int(min(0, game_state.P[0], game_state.T[0], game_state.C[0])) - 2
right_bound = int(max(0, game_state.P[0], game_state.T[0], game_state.C[0])) + 2
bottom_bound = int(min(0, game_state.P[1], game_state.T[1], game_state.C[1])) - 2
top_bound = int(max(0, game_state.P[1], game_state.T[1], game_state.C[1])) + 2
P = game_state.P
T = game_state.T
C = game_state.C
WIDTH = len(range(left_bound, right_bound + 1, game_state.grid_length))
HEIGHT = len(range(bottom_bound, top_bound + 1, game_state.grid_length))
pre_actions = { (x, y) : available_actions(x, y, game_state, left_bound, right_bound, bottom_bound, top_bound) for
x in range(left_bound, right_bound + 1, game_state.grid_length) for
y in range(bottom_bound, top_bound + 1, game_state.grid_length) }
# function approximation
# U(s) = t0 + t1 * f1(s) + t2 * f2(s) + t3 * f3(s) + t4 * f4(s) + ...
# use value_policy as training data
# constant 1
def f0(x, y, P, T, C):
return 1
# manhattan from P
def f1(x, y, P, T, C):
return (1 - P) / ((x - game_state.P[0])**2 + (y - game_state.P[1])**2)**0.5
# (3 - ((x - game_state.P[0])**2 + (y - game_state.P[1])**2))
# manhattan from T
def f2(x, y, P, T, C):
return (1 - T) / ((x - game_state.T[0])**2 + (y - game_state.T[1])**2)**0.5
# (3 - ((x - game_state.T[0])**2 + (y - game_state.T[1])**2))
# manhattan from C
def f3(x, y, P, T, C):
croc_dist = math.sqrt((x - game_state.C[0])**2 + (y - game_state.C[1])**2)
return (1.2 if croc_dist < 10 else 0.9)
# (C) / ((x - game_state.C[0])**2 + (y - game_state.C[1])**2)**0.15
# (1 - ((x - game_state.C[0])**2 + (y - game_state.C[1])**2))
# add constant reward for P encircled
def f4(x, y, P, T, C):
return P * 3
# add constant reward for T encircled
def f5(x, y, P, T, C):
return T * 3
def f6(x, y, P, T, C):
return (1 - C) * 3
alpha = 0.01
max_iter = 10000
NUM_FEATURES = 4
params = [3, 1, 1, -3]
fns = [f0, f1, f2, f3]
def U(x, y, P, T, C):
eval = [params[i] * fns[i](x, y, P, T, C) for i in range(NUM_FEATURES)]
return sum(eval)
#####################
# potentials heatmap
potential_values = np.zeros((WIDTH, HEIGHT))
for x in range(left_bound, right_bound + 1, game_state.grid_length):
for y in range(bottom_bound, top_bound + 1, game_state.grid_length):
if (x, y) in [game_state.P, game_state.T, game_state.C]:
continue
P = 0
T = 1
C = 1
potential_values[x][y] = U(x, y, P, T, C)
# clamp value to postive
# potential_values = np.clip(potential_values, 0, None)
potential_values = np.transpose(potential_values)
plt.imshow(potential_values, cmap='hot', interpolation='nearest', origin='lower')
plt.colorbar(label='Potential values')
plt.show()
#####################
print()
# policy extraction
actions = []
curr_state = (0, 0, get_animal_encoding(False, False, True))
count = 0
while curr_state[2] < 6 and count < 100:
x, y, ae = curr_state
P, T, C = get_animal_decoding(ae)
P = 1 if P else 0
T = 1 if T else 0
C = 1 if C else 0
pactions = pre_actions[x, y]
best_action = None
best_reward = U(x, y, P, T, C)
print (x, y, ae)
print (best_reward)
for a in pactions:
_, new_state = reward(x, y, ae, a, game_state)
new_x, new_y, new_ae = new_state
new_P, new_T, new_C = get_animal_decoding(new_ae)
new_P = 1 if new_P else 0
new_T = 1 if new_T else 0
new_C = 1 if new_C else 0
if (new_x, new_y) in [game_state.P, game_state.T, game_state.C]:
continue
new_U = U(new_x, new_y, new_P, new_T, new_C)
print (a, new_U)
if new_U > best_reward:
print ("better!")
best_reward = new_U
best_action = a
dist_to_plat = math.sqrt((x - game_state.P[0])**2 + (y - game_state.P[1])**2)
dist_to_turt = math.sqrt((x - game_state.T[0])**2 + (y - game_state.T[1])**2)
if best_action is None and dist_to_plat < 10:
best_action = (Action.Encircle, game_state.P, Direction.CW)
elif best_action is None and dist_to_turt < 10:
best_action = (Action.Encircle, game_state.T, Direction.CCW)
elif best_action is None:
break
print(best_action)
print("<<<<<<<<<<<<<<<<<<<<<<<<")
if best_action[0] == Action.Encircle:
actions.append(best_action[0])
actions.append(best_action[1])
else:
actions.append(best_action[0])
curr_state = next_state(x, y, ae, best_action, game_state)
count += 1
print ()
print (actions)
visualise_game_state(game_state, actions)
if __name__ == "__main__":
main()