forked from flintlib/flint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqsieve.h
309 lines (228 loc) · 9.11 KB
/
qsieve.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2006, 2011 William Hart
******************************************************************************/
#ifndef QSIEVE_H
#define QSIEVE_H
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#ifdef __cplusplus
extern "C" {
#endif
#if FLINT_BITS==64
#ifndef uint64_t
#define uint64_t unsigned long
#endif
#else
#include <stdint.h>
#endif
/*
Debug verbosity (bits are as follows):
>0 - print headings for each phase of the sieve and some
simple data about the number of FB primes used, etc.
2 - print poly A coeffs
4 - print polynomials used
8 - print relations
16 - print statistics for sieve contents
32 - print X values for each sieve entry that passes initial sieve test
64 - print information about the number of duplicate relations
128 - print lanczos information and errors
*/
#define QS_DEBUG 0
#define CACHE_SIZE 65536 /* size of L1 cache */
typedef struct prime_t
{
mp_limb_t pinv; /* precomputed inverse */
int p; /* prime */
char size;
} prime_t;
typedef struct fac_t /* struct for factors of relations */
{
long ind;
long exp;
} fac_t;
typedef struct la_col_t /* matrix column */
{
long * data; /* The list of occupied rows in this column */
long weight; /* Number of nonzero entries in this column */
long orig; /* Original relation number */
} la_col_t;
typedef struct qs_s
{
mp_limb_t hi; /* Number to factor */
mp_limb_t lo;
mp_bitcnt_t bits; /* Number of bits of n */
ulong ks_primes; /* number of Knuth-Schroeppel primes */
mp_limb_t k; /* Multiplier */
fmpz_t kn; /* kn as a multiprecision integer */
long num_primes; /* number of factor base primes including k and 2 */
long small_primes; /* number of primes to not sieve with */
long sieve_size; /* size of sieve to use */
prime_t * factor_base; /* data about factor base primes */
int * sqrts; /* square roots of kn mod factor base primes */
char sieve_bits; /* number of bits to exceed in sieve */
/******************
Polynomial data
******************/
mp_limb_t A; /* coefficient A */
mp_limb_t B; /* coefficient B */
fmpz_t C; /* coefficient C */
mp_limb_t * A_ind; /* indices of factor base primes dividing A */
mp_limb_t * A_modp; /* (A/p) mod p for each prime p dividing A */
mp_limb_t * inv_p2; /* newton inverse of p^2 for each factor p of A */
mp_limb_t * B_terms; /*
Let A_i = (A/p) mod p where p is the i-th prime
which is a factor of A, then B_terms[i] is
{p^(1/2) / A_i} mod p * (A/p) where we take
the smaller square root of p
*/
mp_limb_t * A_inv; /* A^(-1) mod p */
mp_limb_t ** A_inv2B; /* A_inv[j][i] = 2*B_terms[j]*A^(-1) mod p */
mp_limb_t * soln1; /* first root of poly */
mp_limb_t * soln2; /* second root of poly */
mp_limb_t target_A; /* approximate target value for A coeff of poly */
long s; /* number of prime factors of A coeff */
long min; /* minimum FB prime that can appear as factor of A */
long span; /* size of set of possible prime factors of A */
long fact; /* middle of set of possible prime factors of A */
long mid; /* start of range for middle factor */
long high; /* end of range for middle factor */
/*********************
Relations data
**********************/
long qsort_rels; /* number of relations to accumulate before sorting */
long extra_rels; /* number of extra relations beyond num_primes */
long max_factors; /* maximum number of factors a relation can have */
long * small; /* exponents of small prime factors in relations */
fac_t * factor; /* factors for a relation */
fmpz * Y_arr; /* array of Y's corresponding to relations */
long * curr_rel; /* current relation in array of relations */
long * relation; /* relation array */
long buffer_size; /* size of buffer of relations */
long num_relations; /* number of relations so far */
long num_factors; /* number of factors found in a relation */
/*********************
Linear algebra data
**********************/
la_col_t * matrix; /* the main matrix over GF(2) in sparse format */
la_col_t * unmerged; /* unmerged matrix columns */
la_col_t ** qsort_arr; /* array of columns ready to be sorted */
long num_unmerged; /* number of columns unmerged */
long columns; /* number of columns in matrix so far */
/*********************
Square root data
**********************/
long * prime_count; /* counts of the exponents of primes appearing in the square */
/*********************
Statistics
**********************/
#if (QS_DEBUG & 16)
long * sieve_tally;
#endif
} qs_s;
typedef qs_s qs_t[1];
/*
Tuning parameters { bits, ks_primes, fb_primes, small_primes }
for qsieve_ll_factor where:
* bits is the number of bits of n
* ks_primes is the max number of primes to try in Knuth-Schroeppel algo
* fb_primes is the number of factor base primes to use (including k and 2)
* small_primes is the number of small primes to not factor with (including k and 2)
* sieve_size is the size of the sieve to use
*/
static const mp_limb_t qsieve_ll_tune[][5] =
{
{0, 50, 80, 2, 14000 },
{30, 50, 80, 2, 16000 },
{40, 50, 100, 3, 18000 },
{50, 50, 120, 3, 20000 },
{60, 50, 140, 4, 22000 },
{70, 50, 160, 4, 24000 },
{80, 100, 180, 5, 26000 },
{90, 100, 200, 5, 28000 },
{100, 100, 250, 6, 30000 },
{110, 100, 300, 6, 34000 },
{120, 100, 500, 7, 40000 },
{130, 100, 550, 7, 60000 }
};
/* number of entries in the tuning table */
#define QS_LL_TUNE_SIZE (sizeof(qsieve_ll_tune)/(5*sizeof(mp_limb_t)))
#define P_GOODNESS 100 /* within what factor of target_A must A be */
#define P_GOODNESS2 200 /* within what factor of target_A must A be when s = 2 */
#define BITS_ADJUST 10 /* no. bits less than f(X) to qualify for trial division */
void qsieve_ll_init(qs_t qs_inf, mp_limb_t hi, mp_limb_t lo);
void qsieve_ll_clear(qs_t qs_inf);
mp_limb_t qsieve_ll_knuth_schroeppel(qs_t qs_inf);
mp_limb_t qsieve_ll_primes_init(qs_t qs_inf);
mp_limb_t qsieve_ll_poly_init(qs_t qs_inf);
void qsieve_ll_linalg_init(qs_t qs_inf);
void qsieve_ll_compute_poly_data(qs_t qs_inf);
void qsieve_ll_compute_A_factor_offsets(qs_t qs_inf);
void qsieve_ll_compute_C(qs_t qs_inf);
long qsieve_ll_collect_relations(qs_t qs_inf, char * sieve);
long qsieve_ll_merge_sort(qs_t qs_inf);
long qsieve_ll_merge_relations(qs_t qs_inf);
long qsieve_ll_insert_relation(qs_t qs_inf, fmpz_t Y);
mp_limb_t qsieve_ll_factor(mp_limb_t hi, mp_limb_t lo);
static __inline__ void insert_col_entry(la_col_t * col, long entry)
{
if (((col->weight >> 4) << 4) == col->weight) /* need more space */
{
if (col->weight != 0) col->data =
(long *) flint_realloc(col->data, (col->weight + 16)*sizeof(long));
else col->data = (long *) flint_malloc(16*sizeof(long));
}
col->data[col->weight] = entry;
col->weight++;
}
static __inline__ void copy_col(la_col_t * col2, la_col_t * col1)
{
col2->weight = col1->weight;
col2->data = col1->data;
col2->orig = col1->orig;
}
static __inline__ void swap_cols(la_col_t * col2, la_col_t * col1)
{
la_col_t temp;
temp.weight = col1->weight;
temp.data = col1->data;
temp.orig = col1->orig;
col1->weight = col2->weight;
col1->data = col2->data;
col1->orig = col2->orig;
col2->weight = temp.weight;
col2->data = temp.data;
col2->orig = temp.orig;
}
static __inline__ void clear_col(la_col_t * col)
{
col->weight = 0;
}
static __inline__ void free_col(la_col_t * col)
{
if (col->weight) flint_free(col->data);
}
uint64_t get_null_entry(uint64_t * nullrows, long i, long l);
void reduce_matrix(qs_t qs_inf, long * nrows, long * ncols, la_col_t * cols);
uint64_t * block_lanczos(flint_rand_t state, long nrows, long dense_rows,
long ncols, la_col_t *B);
void qsieve_ll_square_root(fmpz_t X, fmpz_t Y, qs_t qs_inf,
uint64_t * nullrows, long ncols, long l, fmpz_t N);
#ifdef __cplusplus
}
#endif
#endif