-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
850 lines (774 loc) · 38.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Build model for inference or training."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
import numpy as np
import tensorflow as tf
import nets
import project
import reader
import util
gfile = tf.gfile
slim = tf.contrib.slim
NUM_SCALES = 4
class Model(object):
"""Model code based on SfMLearner."""
def __init__(self,
data_dir=None,
file_extension='png',
is_training=True,
learning_rate=0.0002,
beta1=0.9,
reconstr_weight=0.85,
smooth_weight=0.05,
ssim_weight=0.15,
icp_weight=0.0,
batch_size=4,
#img_height=128,
#img_width=416,
img_height=192,
img_width=192,
seq_length=3,
architecture=nets.RESNET,
imagenet_norm=True,
weight_reg=0.05,
exhaustive_mode=False,
random_scale_crop=False,
flipping_mode=reader.FLIP_RANDOM,
random_color=True,
depth_upsampling=True,
depth_normalization=True,
compute_minimum_loss=True,
use_skip=True,
joint_encoder=True,
build_sum=True,
shuffle=True,
input_file='train',
handle_motion=False,
equal_weighting=False,
size_constraint_weight=0.0,
train_global_scale_var=True):
self.data_dir = data_dir
self.file_extension = file_extension
self.is_training = is_training
self.learning_rate = learning_rate
self.reconstr_weight = reconstr_weight
self.smooth_weight = smooth_weight
self.ssim_weight = ssim_weight
self.icp_weight = icp_weight
self.beta1 = beta1
self.batch_size = batch_size
self.img_height = img_height
self.img_width = img_width
self.seq_length = seq_length
self.architecture = architecture
self.imagenet_norm = imagenet_norm
self.weight_reg = weight_reg
self.exhaustive_mode = exhaustive_mode
self.random_scale_crop = random_scale_crop
self.flipping_mode = flipping_mode
self.random_color = random_color
self.depth_upsampling = depth_upsampling
self.depth_normalization = depth_normalization
self.compute_minimum_loss = compute_minimum_loss
self.use_skip = use_skip
self.joint_encoder = joint_encoder
self.build_sum = build_sum
self.shuffle = shuffle
self.input_file = input_file
self.handle_motion = handle_motion
self.equal_weighting = equal_weighting
self.size_constraint_weight = size_constraint_weight
self.train_global_scale_var = train_global_scale_var
logging.info('data_dir: %s', data_dir)
logging.info('file_extension: %s', file_extension)
logging.info('is_training: %s', is_training)
logging.info('learning_rate: %s', learning_rate)
logging.info('reconstr_weight: %s', reconstr_weight)
logging.info('smooth_weight: %s', smooth_weight)
logging.info('ssim_weight: %s', ssim_weight)
logging.info('icp_weight: %s', icp_weight)
logging.info('size_constraint_weight: %s', size_constraint_weight)
logging.info('beta1: %s', beta1)
logging.info('batch_size: %s', batch_size)
logging.info('img_height: %s', img_height)
logging.info('img_width: %s', img_width)
logging.info('seq_length: %s', seq_length)
logging.info('architecture: %s', architecture)
logging.info('imagenet_norm: %s', imagenet_norm)
logging.info('weight_reg: %s', weight_reg)
logging.info('exhaustive_mode: %s', exhaustive_mode)
logging.info('random_scale_crop: %s', random_scale_crop)
logging.info('flipping_mode: %s', flipping_mode)
logging.info('random_color: %s', random_color)
logging.info('depth_upsampling: %s', depth_upsampling)
logging.info('depth_normalization: %s', depth_normalization)
logging.info('compute_minimum_loss: %s', compute_minimum_loss)
logging.info('use_skip: %s', use_skip)
logging.info('joint_encoder: %s', joint_encoder)
logging.info('build_sum: %s', build_sum)
logging.info('shuffle: %s', shuffle)
logging.info('input_file: %s', input_file)
logging.info('handle_motion: %s', handle_motion)
logging.info('equal_weighting: %s', equal_weighting)
logging.info('train_global_scale_var: %s', train_global_scale_var)
if self.size_constraint_weight > 0 or not is_training:
self.global_scale_var = tf.Variable(
0.1, name='global_scale_var',
trainable=self.is_training and train_global_scale_var,
dtype=tf.float32,
constraint=lambda x: tf.clip_by_value(x, 0, np.infty))
if self.is_training:
self.reader = reader.DataReader(self.data_dir, self.batch_size,
self.img_height, self.img_width,
self.seq_length, NUM_SCALES,
self.file_extension,
self.random_scale_crop,
self.flipping_mode,
self.random_color,
self.imagenet_norm,
self.shuffle,
self.input_file)
self.build_train_graph()
else:
self.build_depth_test_graph()
self.build_egomotion_test_graph()
if self.handle_motion:
self.build_objectmotion_test_graph()
# At this point, the model is ready. Print some info on model params.
util.count_parameters()
def build_train_graph(self):
self.build_inference_for_training()
self.build_loss()
self.build_train_op()
if self.build_sum:
self.build_summaries()
def build_inference_for_training(self):
"""Invokes depth and ego-motion networks and computes clouds if needed."""
(self.image_stack, self.image_stack_norm, self.seg_stack,
self.intrinsic_mat, self.intrinsic_mat_inv) = self.reader.read_data()
with tf.variable_scope('depth_prediction'):
# Organized by ...[i][scale]. Note that the order is flipped in
# variables in build_loss() below.
self.disp = {}
self.depth = {}
self.depth_upsampled = {}
self.inf_loss = 0.0
# Organized by [i].
disp_bottlenecks = [None] * self.seq_length
if self.icp_weight > 0:
self.cloud = {}
for i in range(self.seq_length):
image = self.image_stack_norm[:, :, :, 3 * i:3 * (i + 1)]
multiscale_disps_i, disp_bottlenecks[i] = nets.disp_net(
self.architecture, image, self.use_skip,
self.weight_reg, True)
multiscale_depths_i = [1.0 / d for d in multiscale_disps_i]
self.disp[i] = multiscale_disps_i
self.depth[i] = multiscale_depths_i
if self.depth_upsampling:
self.depth_upsampled[i] = []
# Upsample low-resolution depth maps using differentiable bilinear
# interpolation.
for s in range(len(multiscale_depths_i)):
self.depth_upsampled[i].append(tf.image.resize_bilinear(
multiscale_depths_i[s], [self.img_height, self.img_width],
align_corners=True))
if self.icp_weight > 0:
multiscale_clouds_i = [
project.get_cloud(d,
self.intrinsic_mat_inv[:, s, :, :],
name='cloud%d_%d' % (s, i))
for (s, d) in enumerate(multiscale_depths_i)
]
self.cloud[i] = multiscale_clouds_i
# Reuse the same depth graph for all images.
tf.get_variable_scope().reuse_variables()
if self.handle_motion:
# Define egomotion network. This network can see the whole scene except
# for any moving objects as indicated by the provided segmentation masks.
# To avoid the network getting clues of motion by tracking those masks, we
# define the segmentation masks as the union temporally.
with tf.variable_scope('egomotion_prediction'):
base_input = self.image_stack_norm # (B, H, W, 9)
seg_input = self.seg_stack # (B, H, W, 9)
ref_zero = tf.constant(0, dtype=tf.uint8)
# Motion model is currently defined for three-frame sequences.
object_mask1 = tf.equal(seg_input[:, :, :, 0], ref_zero)
object_mask2 = tf.equal(seg_input[:, :, :, 3], ref_zero)
object_mask3 = tf.equal(seg_input[:, :, :, 6], ref_zero)
mask_complete = tf.expand_dims(tf.logical_and( # (B, H, W, 1)
tf.logical_and(object_mask1, object_mask2), object_mask3), axis=3)
mask_complete = tf.tile(mask_complete, (1, 1, 1, 9)) # (B, H, W, 9)
# Now mask out base_input.
self.mask_complete = tf.to_float(mask_complete)
self.base_input_masked = base_input * self.mask_complete
self.egomotion = nets.egomotion_net(
image_stack=self.base_input_masked,
disp_bottleneck_stack=None,
joint_encoder=False,
seq_length=self.seq_length,
weight_reg=self.weight_reg)
# Define object motion network for refinement. This network only sees
# one object at a time over the whole sequence, and tries to estimate its
# motion. The sequence of images are the respective warped frames.
# For each scale, contains batch_size elements of shape (N, 2, 6).
self.object_transforms = {}
# For each scale, contains batch_size elements of shape (N, H, W, 9).
self.object_masks = {}
self.object_masks_warped = {}
# For each scale, contains batch_size elements of size N.
self.object_ids = {}
self.egomotions_seq = {}
self.warped_seq = {}
self.inputs_objectmotion_net = {}
with tf.variable_scope('objectmotion_prediction'):
# First, warp raw images according to overall egomotion.
for s in range(NUM_SCALES):
self.warped_seq[s] = []
self.egomotions_seq[s] = []
for source_index in range(self.seq_length):
egomotion_mat_i_1 = project.get_transform_mat(
self.egomotion, source_index, 1)
warped_image_i_1, _ = (
project.inverse_warp(
self.image_stack[
:, :, :, source_index*3:(source_index+1)*3],
self.depth_upsampled[1][s],
egomotion_mat_i_1,
self.intrinsic_mat[:, 0, :, :],
self.intrinsic_mat_inv[:, 0, :, :]))
self.warped_seq[s].append(warped_image_i_1)
self.egomotions_seq[s].append(egomotion_mat_i_1)
# Second, for every object in the segmentation mask, take its mask and
# warp it according to the egomotion estimate. Then put a threshold to
# binarize the warped result. Use this mask to mask out background and
# other objects, and pass the filtered image to the object motion
# network.
self.object_transforms[s] = []
self.object_masks[s] = []
self.object_ids[s] = []
self.object_masks_warped[s] = []
self.inputs_objectmotion_net[s] = {}
for i in range(self.batch_size):
seg_sequence = self.seg_stack[i] # (H, W, 9=3*3)
object_ids = tf.unique(tf.reshape(seg_sequence, [-1]))[0]
self.object_ids[s].append(object_ids)
color_stack = []
mask_stack = []
mask_stack_warped = []
for j in range(self.seq_length):
current_image = self.warped_seq[s][j][i] # (H, W, 3)
current_seg = seg_sequence[:, :, j * 3:(j+1) * 3] # (H, W, 3)
def process_obj_mask_warp(obj_id):
"""Performs warping of the individual object masks."""
obj_mask = tf.to_float(tf.equal(current_seg, obj_id))
# Warp obj_mask according to overall egomotion.
obj_mask_warped, _ = (
project.inverse_warp(
tf.expand_dims(obj_mask, axis=0),
# Middle frame, highest scale, batch element i:
tf.expand_dims(self.depth_upsampled[1][s][i], axis=0),
# Matrix for warping j into middle frame, batch elem. i:
tf.expand_dims(self.egomotions_seq[s][j][i], axis=0),
tf.expand_dims(self.intrinsic_mat[i, 0, :, :], axis=0),
tf.expand_dims(self.intrinsic_mat_inv[i, 0, :, :],
axis=0)))
obj_mask_warped = tf.squeeze(obj_mask_warped)
obj_mask_binarized = tf.greater( # Threshold to binarize mask.
obj_mask_warped, tf.constant(0.5))
return tf.to_float(obj_mask_binarized)
def process_obj_mask(obj_id):
"""Returns the individual object masks separately."""
return tf.to_float(tf.equal(current_seg, obj_id))
object_masks = tf.map_fn( # (N, H, W, 3)
process_obj_mask, object_ids, dtype=tf.float32)
if self.size_constraint_weight > 0:
# The object segmentation masks are all in object_masks.
# We need to measure the height of every of them, and get the
# approximate distance.
# self.depth_upsampled of shape (seq_length, scale, B, H, W).
depth_pred = self.depth_upsampled[j][s][i] # (H, W)
def get_losses(obj_mask):
"""Get motion constraint loss."""
# Find height of segment.
coords = tf.where(tf.greater( # Shape (num_true, 2=yx)
obj_mask[:, :, 0], tf.constant(0.5, dtype=tf.float32)))
y_max = tf.reduce_max(coords[:, 0])
y_min = tf.reduce_min(coords[:, 0])
seg_height = y_max - y_min
f_y = self.intrinsic_mat[i, 0, 1, 1]
approx_depth = ((f_y * self.global_scale_var) /
tf.to_float(seg_height))
reference_pred = tf.boolean_mask(
depth_pred, tf.greater(
tf.reshape(obj_mask[:, :, 0],
(self.img_height, self.img_width, 1)),
tf.constant(0.5, dtype=tf.float32)))
# Establish loss on approx_depth, a scalar, and
# reference_pred, our dense prediction. Normalize both to
# prevent degenerative depth shrinking.
global_mean_depth_pred = tf.reduce_mean(depth_pred)
reference_pred /= global_mean_depth_pred
approx_depth /= global_mean_depth_pred
spatial_err = tf.abs(reference_pred - approx_depth)
mean_spatial_err = tf.reduce_mean(spatial_err)
return mean_spatial_err
losses = tf.map_fn(
get_losses, object_masks, dtype=tf.float32)
self.inf_loss += tf.reduce_mean(losses)
object_masks_warped = tf.map_fn( # (N, H, W, 3)
process_obj_mask_warp, object_ids, dtype=tf.float32)
filtered_images = tf.map_fn(
lambda mask: current_image * mask, object_masks_warped,
dtype=tf.float32) # (N, H, W, 3)
color_stack.append(filtered_images)
mask_stack.append(object_masks)
mask_stack_warped.append(object_masks_warped)
# For this batch-element, if there are N moving objects,
# color_stack, mask_stack and mask_stack_warped contain both
# seq_length elements of shape (N, H, W, 3).
# We can now concatenate them on the last axis, creating a tensor of
# (N, H, W, 3*3 = 9), and, assuming N does not get too large so that
# we have enough memory, pass them in a single batch to the object
# motion network.
mask_stack = tf.concat(mask_stack, axis=3) # (N, H, W, 9)
mask_stack_warped = tf.concat(mask_stack_warped, axis=3)
color_stack = tf.concat(color_stack, axis=3) # (N, H, W, 9)
all_transforms = nets.objectmotion_net(
# We cut the gradient flow here as the object motion gradient
# should have no saying in how the egomotion network behaves.
# One could try just stopping the gradient for egomotion, but
# not for the depth prediction network.
image_stack=tf.stop_gradient(color_stack),
disp_bottleneck_stack=None,
joint_encoder=False, # Joint encoder not supported.
seq_length=self.seq_length,
weight_reg=self.weight_reg)
# all_transforms of shape (N, 2, 6).
self.object_transforms[s].append(all_transforms)
self.object_masks[s].append(mask_stack)
self.object_masks_warped[s].append(mask_stack_warped)
self.inputs_objectmotion_net[s][i] = color_stack
tf.get_variable_scope().reuse_variables()
else:
# Don't handle motion, classic model formulation.
with tf.name_scope('egomotion_prediction'):
if self.joint_encoder:
# Re-arrange disp_bottleneck_stack to be of shape
# [B, h_hid, w_hid, c_hid * seq_length]. Currently, it is a list with
# seq_length elements, each of dimension [B, h_hid, w_hid, c_hid].
disp_bottleneck_stack = tf.concat(disp_bottlenecks, axis=3)
else:
disp_bottleneck_stack = None
self.egomotion = nets.egomotion_net(
image_stack=self.image_stack_norm,
disp_bottleneck_stack=disp_bottleneck_stack,
joint_encoder=self.joint_encoder,
seq_length=self.seq_length,
weight_reg=self.weight_reg)
def build_loss(self):
"""Adds ops for computing loss."""
with tf.name_scope('compute_loss'):
self.reconstr_loss = 0
self.smooth_loss = 0
self.ssim_loss = 0
self.icp_transform_loss = 0
self.icp_residual_loss = 0
# self.images is organized by ...[scale][B, h, w, seq_len * 3].
self.images = [None for _ in range(NUM_SCALES)]
# Following nested lists are organized by ...[scale][source-target].
self.warped_image = [{} for _ in range(NUM_SCALES)]
self.warp_mask = [{} for _ in range(NUM_SCALES)]
self.warp_error = [{} for _ in range(NUM_SCALES)]
self.ssim_error = [{} for _ in range(NUM_SCALES)]
self.icp_transform = [{} for _ in range(NUM_SCALES)]
self.icp_residual = [{} for _ in range(NUM_SCALES)]
self.middle_frame_index = util.get_seq_middle(self.seq_length)
# Compute losses at each scale.
for s in range(NUM_SCALES):
# Scale image stack.
if s == 0: # Just as a precaution. TF often has interpolation bugs.
self.images[s] = self.image_stack
else:
height_s = int(self.img_height / (2**s))
width_s = int(self.img_width / (2**s))
self.images[s] = tf.image.resize_bilinear(
self.image_stack, [height_s, width_s], align_corners=True)
# Smoothness.
if self.smooth_weight > 0:
for i in range(self.seq_length):
# When computing minimum loss, use the depth map from the middle
# frame only.
if not self.compute_minimum_loss or i == self.middle_frame_index:
disp_smoothing = self.disp[i][s]
if self.depth_normalization:
# Perform depth normalization, dividing by the mean.
mean_disp = tf.reduce_mean(disp_smoothing, axis=[1, 2, 3],
keep_dims=True)
disp_input = disp_smoothing / mean_disp
else:
disp_input = disp_smoothing
scaling_f = (1.0 if self.equal_weighting else 1.0 / (2**s))
self.smooth_loss += scaling_f * self.depth_smoothness(
disp_input, self.images[s][:, :, :, 3 * i:3 * (i + 1)])
self.debug_all_warped_image_batches = []
for i in range(self.seq_length):
for j in range(self.seq_length):
if i == j:
continue
# When computing minimum loss, only consider the middle frame as
# target.
if self.compute_minimum_loss and j != self.middle_frame_index:
continue
# We only consider adjacent frames, unless either
# compute_minimum_loss is on (where the middle frame is matched with
# all other frames) or exhaustive_mode is on (where all frames are
# matched with each other).
if (not self.compute_minimum_loss and not self.exhaustive_mode and
abs(i - j) != 1):
continue
selected_scale = 0 if self.depth_upsampling else s
source = self.images[selected_scale][:, :, :, 3 * i:3 * (i + 1)]
target = self.images[selected_scale][:, :, :, 3 * j:3 * (j + 1)]
if self.depth_upsampling:
target_depth = self.depth_upsampled[j][s]
else:
target_depth = self.depth[j][s]
key = '%d-%d' % (i, j)
if self.handle_motion:
# self.seg_stack of shape (B, H, W, 9).
# target_depth corresponds to middle frame, of shape (B, H, W, 1).
# Now incorporate the other warping results, performed according
# to the object motion network's predictions.
# self.object_masks batch_size elements of (N, H, W, 9).
# self.object_masks_warped batch_size elements of (N, H, W, 9).
# self.object_transforms batch_size elements of (N, 2, 6).
self.all_batches = []
for batch_s in range(self.batch_size):
# To warp i into j, first take the base warping (this is the
# full image i warped into j using only the egomotion estimate).
base_warping = self.warped_seq[s][i][batch_s]
transform_matrices_thisbatch = tf.map_fn(
lambda transform: project.get_transform_mat(
tf.expand_dims(transform, axis=0), i, j)[0],
self.object_transforms[0][batch_s])
def inverse_warp_wrapper(matrix):
"""Wrapper for inverse warping method."""
warp_image, _ = (
project.inverse_warp(
tf.expand_dims(base_warping, axis=0),
tf.expand_dims(target_depth[batch_s], axis=0),
tf.expand_dims(matrix, axis=0),
tf.expand_dims(self.intrinsic_mat[
batch_s, selected_scale, :, :], axis=0),
tf.expand_dims(self.intrinsic_mat_inv[
batch_s, selected_scale, :, :], axis=0)))
return warp_image
warped_images_thisbatch = tf.map_fn(
inverse_warp_wrapper, transform_matrices_thisbatch,
dtype=tf.float32)
warped_images_thisbatch = warped_images_thisbatch[:, 0, :, :, :]
# warped_images_thisbatch is now of shape (N, H, W, 9).
# Combine warped frames into a single one, using the object
# masks. Result should be (1, 128, 416, 3).
# Essentially, we here want to sum them all up, filtered by the
# respective object masks.
mask_base_valid_source = tf.equal(
self.seg_stack[batch_s, :, :, i*3:(i+1)*3],
tf.constant(0, dtype=tf.uint8))
mask_base_valid_target = tf.equal(
self.seg_stack[batch_s, :, :, j*3:(j+1)*3],
tf.constant(0, dtype=tf.uint8))
mask_valid = tf.logical_and(
mask_base_valid_source, mask_base_valid_target)
self.base_warping = base_warping * tf.to_float(mask_valid)
background = tf.expand_dims(self.base_warping, axis=0)
def construct_const_filter_tensor(obj_id):
return tf.fill(
dims=[self.img_height, self.img_width, 3],
value=tf.sign(obj_id)) * tf.to_float(
tf.equal(self.seg_stack[batch_s, :, :, 3:6],
tf.cast(obj_id, dtype=tf.uint8)))
filter_tensor = tf.map_fn(
construct_const_filter_tensor,
tf.to_float(self.object_ids[s][batch_s]))
filter_tensor = tf.stack(filter_tensor, axis=0)
objects_to_add = tf.reduce_sum(
tf.multiply(warped_images_thisbatch, filter_tensor),
axis=0, keepdims=True)
combined = background + objects_to_add
self.all_batches.append(combined)
# Now of shape (B, 128, 416, 3).
self.warped_image[s][key] = tf.concat(self.all_batches, axis=0)
else:
# Don't handle motion, classic model formulation.
egomotion_mat_i_j = project.get_transform_mat(
self.egomotion, i, j)
# Inverse warp the source image to the target image frame for
# photometric consistency loss.
self.warped_image[s][key], self.warp_mask[s][key] = (
project.inverse_warp(
source,
target_depth,
egomotion_mat_i_j,
self.intrinsic_mat[:, selected_scale, :, :],
self.intrinsic_mat_inv[:, selected_scale, :, :]))
# Reconstruction loss.
self.warp_error[s][key] = tf.abs(self.warped_image[s][key] - target)
if not self.compute_minimum_loss:
self.reconstr_loss += tf.reduce_mean(
self.warp_error[s][key] * self.warp_mask[s][key])
# SSIM.
if self.ssim_weight > 0:
self.ssim_error[s][key] = self.ssim(self.warped_image[s][key],
target)
# TODO(rezama): This should be min_pool2d().
if not self.compute_minimum_loss:
ssim_mask = slim.avg_pool2d(self.warp_mask[s][key], 3, 1,
'VALID')
self.ssim_loss += tf.reduce_mean(
self.ssim_error[s][key] * ssim_mask)
# If the minimum loss should be computed, the loss calculation has been
# postponed until here.
if self.compute_minimum_loss:
for frame_index in range(self.middle_frame_index):
key1 = '%d-%d' % (frame_index, self.middle_frame_index)
key2 = '%d-%d' % (self.seq_length - frame_index - 1,
self.middle_frame_index)
logging.info('computing min error between %s and %s', key1, key2)
min_error = tf.minimum(self.warp_error[s][key1],
self.warp_error[s][key2])
self.reconstr_loss += tf.reduce_mean(min_error)
if self.ssim_weight > 0: # Also compute the minimum SSIM loss.
min_error_ssim = tf.minimum(self.ssim_error[s][key1],
self.ssim_error[s][key2])
self.ssim_loss += tf.reduce_mean(min_error_ssim)
# Build the total loss as composed of L1 reconstruction, SSIM, smoothing
# and object size constraint loss as appropriate.
self.reconstr_loss *= self.reconstr_weight
self.total_loss = self.reconstr_loss
if self.smooth_weight > 0:
self.smooth_loss *= self.smooth_weight
self.total_loss += self.smooth_loss
if self.ssim_weight > 0:
self.ssim_loss *= self.ssim_weight
self.total_loss += self.ssim_loss
if self.size_constraint_weight > 0:
self.inf_loss *= self.size_constraint_weight
self.total_loss += self.inf_loss
def gradient_x(self, img):
return img[:, :, :-1, :] - img[:, :, 1:, :]
def gradient_y(self, img):
return img[:, :-1, :, :] - img[:, 1:, :, :]
def depth_smoothness(self, depth, img):
"""Computes image-aware depth smoothness loss."""
depth_dx = self.gradient_x(depth)
depth_dy = self.gradient_y(depth)
image_dx = self.gradient_x(img)
image_dy = self.gradient_y(img)
weights_x = tf.exp(-tf.reduce_mean(tf.abs(image_dx), 3, keepdims=True))
weights_y = tf.exp(-tf.reduce_mean(tf.abs(image_dy), 3, keepdims=True))
smoothness_x = depth_dx * weights_x
smoothness_y = depth_dy * weights_y
return tf.reduce_mean(abs(smoothness_x)) + tf.reduce_mean(abs(smoothness_y))
def ssim(self, x, y):
"""Computes a differentiable structured image similarity measure."""
c1 = 0.01**2 # As defined in SSIM to stabilize div. by small denominator.
c2 = 0.03**2
mu_x = slim.avg_pool2d(x, 3, 1, 'VALID')
mu_y = slim.avg_pool2d(y, 3, 1, 'VALID')
sigma_x = slim.avg_pool2d(x**2, 3, 1, 'VALID') - mu_x**2
sigma_y = slim.avg_pool2d(y**2, 3, 1, 'VALID') - mu_y**2
sigma_xy = slim.avg_pool2d(x * y, 3, 1, 'VALID') - mu_x * mu_y
ssim_n = (2 * mu_x * mu_y + c1) * (2 * sigma_xy + c2)
ssim_d = (mu_x**2 + mu_y**2 + c1) * (sigma_x + sigma_y + c2)
ssim = ssim_n / ssim_d
return tf.clip_by_value((1 - ssim) / 2, 0, 1)
def build_train_op(self):
with tf.name_scope('train_op'):
optim = tf.train.AdamOptimizer(self.learning_rate, self.beta1)
self.train_op = slim.learning.create_train_op(self.total_loss, optim)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.incr_global_step = tf.assign(
self.global_step, self.global_step + 1)
def build_summaries(self):
"""Adds scalar and image summaries for TensorBoard."""
tf.summary.scalar('total_loss', self.total_loss)
tf.summary.scalar('reconstr_loss', self.reconstr_loss)
if self.smooth_weight > 0:
tf.summary.scalar('smooth_loss', self.smooth_loss)
if self.ssim_weight > 0:
tf.summary.scalar('ssim_loss', self.ssim_loss)
if self.icp_weight > 0:
tf.summary.scalar('icp_transform_loss', self.icp_transform_loss)
tf.summary.scalar('icp_residual_loss', self.icp_residual_loss)
if self.size_constraint_weight > 0:
tf.summary.scalar('inf_loss', self.inf_loss)
tf.summary.histogram('global_scale_var', self.global_scale_var)
if self.handle_motion:
for s in range(NUM_SCALES):
for batch_s in range(self.batch_size):
whole_strip = tf.concat([self.warped_seq[s][0][batch_s],
self.warped_seq[s][1][batch_s],
self.warped_seq[s][2][batch_s]], axis=1)
tf.summary.image('base_warp_batch%s_scale%s' % (batch_s, s),
tf.expand_dims(whole_strip, axis=0))
whole_strip_input = tf.concat(
[self.inputs_objectmotion_net[s][batch_s][:, :, :, 0:3],
self.inputs_objectmotion_net[s][batch_s][:, :, :, 3:6],
self.inputs_objectmotion_net[s][batch_s][:, :, :, 6:9]], axis=2)
tf.summary.image('input_objectmotion_batch%s_scale%s' % (batch_s, s),
whole_strip_input) # (B, H, 3*W, 3)
for batch_s in range(self.batch_size):
whole_strip = tf.concat([self.base_input_masked[batch_s, :, :, 0:3],
self.base_input_masked[batch_s, :, :, 3:6],
self.base_input_masked[batch_s, :, :, 6:9]],
axis=1)
tf.summary.image('input_egomotion_batch%s' % batch_s,
tf.expand_dims(whole_strip, axis=0))
# Show transform predictions (of all objects).
for batch_s in range(self.batch_size):
for i in range(self.seq_length - 1):
# self.object_transforms contains batch_size elements of (N, 2, 6).
tf.summary.histogram('batch%d_tx%d' % (batch_s, i),
self.object_transforms[0][batch_s][:, i, 0])
tf.summary.histogram('batch%d_ty%d' % (batch_s, i),
self.object_transforms[0][batch_s][:, i, 1])
tf.summary.histogram('batch%d_tz%d' % (batch_s, i),
self.object_transforms[0][batch_s][:, i, 2])
tf.summary.histogram('batch%d_rx%d' % (batch_s, i),
self.object_transforms[0][batch_s][:, i, 3])
tf.summary.histogram('batch%d_ry%d' % (batch_s, i),
self.object_transforms[0][batch_s][:, i, 4])
tf.summary.histogram('batch%d_rz%d' % (batch_s, i),
self.object_transforms[0][batch_s][:, i, 5])
for i in range(self.seq_length - 1):
tf.summary.histogram('tx%d' % i, self.egomotion[:, i, 0])
tf.summary.histogram('ty%d' % i, self.egomotion[:, i, 1])
tf.summary.histogram('tz%d' % i, self.egomotion[:, i, 2])
tf.summary.histogram('rx%d' % i, self.egomotion[:, i, 3])
tf.summary.histogram('ry%d' % i, self.egomotion[:, i, 4])
tf.summary.histogram('rz%d' % i, self.egomotion[:, i, 5])
for s in range(NUM_SCALES):
for i in range(self.seq_length):
tf.summary.image('scale%d_image%d' % (s, i),
self.images[s][:, :, :, 3 * i:3 * (i + 1)])
if i in self.depth:
tf.summary.histogram('scale%d_depth%d' % (s, i), self.depth[i][s])
tf.summary.histogram('scale%d_disp%d' % (s, i), self.disp[i][s])
tf.summary.image('scale%d_disparity%d' % (s, i), self.disp[i][s])
for key in self.warped_image[s]:
tf.summary.image('scale%d_warped_image%s' % (s, key),
self.warped_image[s][key])
tf.summary.image('scale%d_warp_error%s' % (s, key),
self.warp_error[s][key])
if self.ssim_weight > 0:
tf.summary.image('scale%d_ssim_error%s' % (s, key),
self.ssim_error[s][key])
if self.icp_weight > 0:
tf.summary.image('scale%d_icp_residual%s' % (s, key),
self.icp_residual[s][key])
transform = self.icp_transform[s][key]
tf.summary.histogram('scale%d_icp_tx%s' % (s, key), transform[:, 0])
tf.summary.histogram('scale%d_icp_ty%s' % (s, key), transform[:, 1])
tf.summary.histogram('scale%d_icp_tz%s' % (s, key), transform[:, 2])
tf.summary.histogram('scale%d_icp_rx%s' % (s, key), transform[:, 3])
tf.summary.histogram('scale%d_icp_ry%s' % (s, key), transform[:, 4])
tf.summary.histogram('scale%d_icp_rz%s' % (s, key), transform[:, 5])
def build_depth_test_graph(self):
"""Builds depth model reading from placeholders."""
with tf.variable_scope('depth_prediction'):
input_image = tf.placeholder(
tf.float32, [self.batch_size, self.img_height, self.img_width, 3],
name='raw_input')
if self.imagenet_norm:
input_image = (input_image - reader.IMAGENET_MEAN) / reader.IMAGENET_SD
est_disp, _ = nets.disp_net(architecture=self.architecture,
image=input_image,
use_skip=self.use_skip,
weight_reg=self.weight_reg,
is_training=True)
est_depth = 1.0 / est_disp[0]
self.input_image = input_image
self.est_depth = est_depth
def build_egomotion_test_graph(self):
"""Builds egomotion model reading from placeholders."""
input_image_stack = tf.placeholder(
tf.float32,
[1, self.img_height, self.img_width, self.seq_length * 3],
name='raw_input')
input_bottleneck_stack = None
if self.imagenet_norm:
im_mean = tf.tile(
tf.constant(reader.IMAGENET_MEAN), multiples=[self.seq_length])
im_sd = tf.tile(
tf.constant(reader.IMAGENET_SD), multiples=[self.seq_length])
input_image_stack = (input_image_stack - im_mean) / im_sd
if self.joint_encoder:
# Pre-compute embeddings here.
with tf.variable_scope('depth_prediction', reuse=True):
input_bottleneck_stack = []
encoder_selected = nets.encoder(self.architecture)
for i in range(self.seq_length):
input_image = input_image_stack[:, :, :, i * 3:(i + 1) * 3]
tf.get_variable_scope().reuse_variables()
embedding, _ = encoder_selected(
target_image=input_image,
weight_reg=self.weight_reg,
is_training=True)
input_bottleneck_stack.append(embedding)
input_bottleneck_stack = tf.concat(input_bottleneck_stack, axis=3)
with tf.variable_scope('egomotion_prediction'):
est_egomotion = nets.egomotion_net(
image_stack=input_image_stack,
disp_bottleneck_stack=input_bottleneck_stack,
joint_encoder=self.joint_encoder,
seq_length=self.seq_length,
weight_reg=self.weight_reg)
self.input_image_stack = input_image_stack
self.est_egomotion = est_egomotion
def build_objectmotion_test_graph(self):
"""Builds egomotion model reading from placeholders."""
input_image_stack_om = tf.placeholder(
tf.float32,
[1, self.img_height, self.img_width, self.seq_length * 3],
name='raw_input')
if self.imagenet_norm:
im_mean = tf.tile(
tf.constant(reader.IMAGENET_MEAN), multiples=[self.seq_length])
im_sd = tf.tile(
tf.constant(reader.IMAGENET_SD), multiples=[self.seq_length])
input_image_stack_om = (input_image_stack_om - im_mean) / im_sd
with tf.variable_scope('objectmotion_prediction'):
est_objectmotion = nets.objectmotion_net(
image_stack=input_image_stack_om,
disp_bottleneck_stack=None,
joint_encoder=self.joint_encoder,
seq_length=self.seq_length,
weight_reg=self.weight_reg)
self.input_image_stack_om = input_image_stack_om
self.est_objectmotion = est_objectmotion
def inference_depth(self, inputs, sess):
return sess.run(self.est_depth, feed_dict={self.input_image: inputs})
def inference_egomotion(self, inputs, sess):
return sess.run(
self.est_egomotion, feed_dict={self.input_image_stack: inputs})
def inference_objectmotion(self, inputs, sess):
return sess.run(
self.est_objectmotion, feed_dict={self.input_image_stack_om: inputs})