forked from SPOClab-ca/ThinkerInvariance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
269 lines (209 loc) · 8.56 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from layers import *
from math import ceil
from collections import OrderedDict
from braindecode.models.eegnet import EEGNetv4
from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
class SCN(Module):
def __init__(self, targets=4, filters=40, channels=22, samples=1500, subjects=1, runs=None, **kwargs):
super().__init__()
self.base_model = ShallowFBCSPNet(channels, targets, samples, final_conv_length='auto').create_network()
def forward(self, x):
x = x.unsqueeze(-1)
return self.base_model(x)
class EEGNet(Module):
def __init__(self, targets=4, filters=40, channels=22, samples=1500, subjects=1, runs=None, **kwargs):
super().__init__()
self.base_model = EEGNetv4(channels, targets, input_time_length=samples).create_network()
def forward(self, x):
return self.base_model(x)
class ShallowConvNet(Module):
def __init__(self, targets=2, channels=64, filters=40, t_f_len=25, samples=960, do=0.5, pooling=15, **kwargs):
super().__init__()
after_size = 40 * samples // pooling
self.convs = Sequential(
Conv2d(1, filters, (1, t_f_len)),
Conv2d(filters, filters, (channels, 1)),
BatchNorm2d(filters),
)
self.avg_pool = AvgPool2d((1, 75), (1, pooling))
self.classify = Sequential(
Dropout(do),
Conv2d(filters, targets, (1, 11)),
Flatten(),
LogSoftmax()
)
def forward(self, x, **kwargs):
x = x.unsqueeze(1)
x = self.convs(x)
x = x.pow(2)
x = self.avg_pool(x)
x = torch.log(torch.clamp(x, min=1e-6))
print(self.classify(x).shape)
return self.classify(x)
@property
def num_features(self):
return 80
class AltShallow(Module):
def __init__(self, targets=2, channels=64, samples=960, do=0.0, pooling=15, subjects=None, runs=None, **kwargs):
super().__init__()
after_size = 40 * samples // pooling
self.network = Sequential(
Conv2d(1, 40, (1, 31), padding=(0, 15)),
ReLU(),
Conv2d(40, 40, (channels, 1)),
ReLU(),
AvgPool2d((1, 15)),
Flatten(),
Linear(after_size, 80),
ReLU(),
)
self.classify = Sequential(
Linear(80, targets),
LogSoftmax()
)
# Not in the original
self.subj_classify = Sequential(Linear(80, subjects), LogSoftmax()) if subjects is not None else None
self.run_classify = Sequential(Linear(80, runs), LogSoftmax()) if runs is not None else None
def forward(self, x, **kwargs):
x = x.unsqueeze(1)
f = self.network(x)
results = dict(prediction=self.classify(f), features=f)
if self.subj_classify is not None:
results['subject'] = self.subj_classify(f)
if self.run_classify is not None:
results['run'] = self.run_classify(f)
return results
@property
def num_features(self):
return 80
class reEEGNet(Module):
def __init__(self, targets=2, channels=64, samples=960, do=0.5, pooling=8, F1=8, D=2,
t_len=65, F2=16, **kwargs):
super().__init__()
self.init_conv = Sequential(
Expand(1),
Conv2d(1, F1, (1, t_len), padding=(0, t_len // 2), bias=False),
BatchNorm2d(F1)
)
self.depth_conv = Sequential(
Conv2d(F1, D * F1, (channels, 1), bias=False, groups=F1),
BatchNorm2d(D * F1),
ELU(),
AvgPool2d((1, pooling // 2)),
Dropout(0.25)
)
samples = samples // (pooling // 2)
self.sep_conv = Sequential(
# Separate into two convs, one that doesnt operate across filters, one isolated to filters
Conv2d(D*F1, D*F1, (1, 17), bias=False, padding=(0, 8), groups=D*F1),
Conv2d(D*F1, F2, (1, 1), bias=False),
BatchNorm2d(F2),
ELU(),
AvgPool2d((1, pooling)),
Dropout(0.25)
)
samples = samples // pooling
self._num_features = F2 * samples
self.classifier = Sequential(
Flatten(),
Linear(self._num_features, targets),
LogSoftmax(dim=-1)
)
@property
def num_features(self):
return self._num_features
def forward(self, x):
x = self.init_conv(x)
x = self.depth_conv(x)
x = self.sep_conv(x)
return dict(prediction=self.classifier(x))
class _tidnet_features(Module):
def __init__(self, s_growth=24, t_filters=32, channels=22, samples=1500, do=0.4, pooling=20,
temp_layers=2, spat_layers=2, temp_span=0.05, bottleneck=3, summary=-1):
super().__init__()
self.channels = channels
self.samples = samples
self.temp_len = ceil(temp_span * samples)
self.temporal = Sequential(
Expand(axis=1),
TemporalFilter(1, t_filters, depth=temp_layers, temp_len=self.temp_len),
MaxPool2d((1, pooling)),
Dropout2d(do),
)
summary = samples // pooling if summary == -1 else summary
self.spatial = DenseSpatialFilter(channels, s_growth, spat_layers, in_ch=t_filters, dropout_rate=do,
bottleneck=bottleneck)
self.extract_features = Sequential(
AdaptiveAvgPool1d(int(summary)),
Flatten()
)
self._num_features = (t_filters + s_growth * spat_layers) * summary
@property
def num_features(self):
return self._num_features
def forward(self, x, **kwargs):
x = self.temporal(x)
x = self.spatial(x)
return self.extract_features(x)
class TIDNet(Module):
def __init__(self, targets=4, s_growth=24, t_filters=32, channels=22, samples=1500, do=0.4, pooling=15, subjects=1,
temp_layers=2, spat_layers=2, runs=None, temp_span=0.05, bottleneck=3, summary=-1, **kwargs):
super().__init__()
self.classes = targets
self.channels = channels
self.subjects = subjects
self.runs = runs
self.samples = samples
self.temp_len = ceil(temp_span * samples)
self.dscnn = _tidnet_features(s_growth=s_growth, t_filters=t_filters, channels=channels, samples=samples,
do=do, pooling=pooling, temp_layers=temp_layers, spat_layers=spat_layers,
temp_span=temp_span, bottleneck=bottleneck, summary=summary, **kwargs)
self._num_features = self.dscnn.num_features
self.classify = self._create_classifier(self.num_features, targets)
self.subject_prediction = self._create_classifier(self.num_features, subjects)
self.run_prediction = self._create_classifier(self.num_features, runs)
def _create_classifier(self, incoming, targets):
classifier = Linear(incoming, targets)
init.xavier_normal_(classifier.weight)
classifier.bias.data.zero_()
return Sequential(Flatten(), classifier, LogSoftmax(dim=-1))
def forward(self, x, **kwargs):
x = self.dscnn(x)
subject = self.subject_prediction(x) if self.subjects is not None else None
run = self.run_prediction(x) if self.runs is not None else None
return dict(prediction=self.classify(x), subject=subject, run=run, features=x.view(x.size(0), -1))
@property
def num_features(self):
return self._num_features
def restricted_param_loading(self, params: OrderedDict, freeze=False):
removal = list()
for param in params:
if 'classify' in param or 'prediction' in param:
removal.append(param)
for p in removal:
params.pop(p)
self.load_state_dict(params, strict=False)
if freeze:
for param in self.parameters():
param.requires_grad = False
print('All layers frozen')
print('New last layer added, and all others frozen.')
self.classify = Sequential(
Linear(self.num_features, self.classes),
LogSoftmax(dim=-1)
)
self.subject_prediction = Sequential(
Linear(self.num_features, self.subjects),
LogSoftmax()
)
self.run_prediction = Sequential(
Linear(self.num_features, self.runs),
LogSoftmax()
)
print('New classifiers added.')
MODELS = {
'CNN-CSP': SCN,
'Dose': AltShallow,
'EEGNet': reEEGNet,
'TIDNet': TIDNet,
}