-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkops_old.py
235 lines (207 loc) · 9.44 KB
/
mkops_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 28 13:07:12 2023
@author: georgioskeliris
"""
from ScanImageTiffReader import ScanImageTiffReader
import os
import json
import numpy as np
import suite2p
def mkops_old(basepath, dat, db={}):
if 'pipeline' not in db.keys():
db['pipeline']='orig'
# Create a reader object. Currently using ScanImageTiffReader. Should be
# adapted for other tiff images.
reader = ScanImageTiffReader(os.path.join(dat.rawPath, dat.firstTiff))
# Get the tiff dimensions. Currently not used I think
tiff_dim=reader.shape()
# Read the header info and convert to a json object
h=reader.metadata()
js=h.find('{\n')
hh=h[1:js-2].splitlines()
json_obj=json.loads(h[js:-1])
# Create and fill a dictionary with key : value pairs
hhDict={}
for s in hh:
eq_ind = s.find('=')
hhDict[s[:eq_ind-1]] = s[eq_ind+2:]
# Get the sampling rate
fsV = float(hhDict['SI.hRoiManager.scanVolumeRate'])
fsF = float(hhDict['SI.hRoiManager.scanFrameRate'])
# Get the z planes
zsstr = hhDict['SI.hStackManager.zs']
if zsstr[0] == '[':
zs = zsstr[1:-1].split(" ")
else:
zs = [zsstr]
# This is to avoid the fact of a very long list of the same z in some datasets
zs = list(dict.fromkeys(zs))
print('zs=' + str(zs))
# This is another way if previous problematic
# tmpzs = []
# for x in zs:
# if x not in tmpzs:
# tmpzs.append(x)
# zs=tmpzs
# Calculate the number of planes
nplanes = len(zs)
# Get the number of channels
if hhDict['SI.hChannels.channelsActive']=='[1;2]':
nChannels=2;
else:
nChannels=1;
# Decode the ROI info
si_rois = json_obj['RoiGroups']['imagingRoiGroup']['rois']
if type(si_rois) is dict:
si_rois = [si_rois]
nrois = len(si_rois)
rois_zs = [si_rois[f]['zs'] for f in range(nrois)]
if type(rois_zs[0]) is list:
rois_zs = set(sum(rois_zs,[]))
# Exceptions
if (dat.cohort=='coh1') & (dat.mouseID=='M25') & (dat.week=='w11'):
whichplane=[0, 0, 1, 1]
whichroi=[0, 1, 0, 1]
whichscanfield=[0, 0, 0, 0]
nroisPerPlane=np.array([2, 2])
elif (dat.cohort=='coh1') & (dat.mouseID=='M117') & (dat.week=='w22'):
whichplane=[0, 0, 1, 1, 2, 2]
whichroi=[0, 1, 0, 1, 0, 1]
whichscanfield=[0, 0, 0, 0, 0, 0]
nroisPerPlane=np.array([2, 2, 2])
elif len(rois_zs) < len(zs): # This probably solves the above two as well
whichplane =sum([[f] * nrois for f in range(nplanes)],[])
whichroi=sum([[f for f in range(nrois)] * nplanes],[])
whichscanfield=[0] * (nrois * nplanes)
nroisPerPlane=np.array([nrois] * nplanes)
print('special case\n')
else: # read values of rois per plane etc. to later loop and get info
nroisPerPlane = np.zeros(nplanes)
whichplane = []
whichroi = []
whichscanfield=[]
for p in range(0, nplanes):
for kk in range(0, nrois):
if np.any(np.isin(si_rois[kk]['zs'], int(zs[p]))):
nroisPerPlane[p] = nroisPerPlane[p]+1
whichplane.append(p)
whichroi.append(kk)
tmp=np.where(np.array(si_rois[kk]['zs'])==int(zs[p]))
whichscanfield.append(tmp[0][0])
#nplanes = len(np.unique(whichplane))
# Loop across planes and extact info of each ROI
pln = [{'plane':x,'Ly':[], 'Lx':[], 'cY':[], 'cX':[], 'szY':[], 'szX':[]} for x in range(0,nplanes)]
aspect=[]
for i in range(0,len(whichplane)):
if len(np.unique(whichscanfield)) > 1:
pln[whichplane[i]]['Ly'].append(si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['pixelResolutionXY'][1])
pln[whichplane[i]]['Lx'].append(si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['pixelResolutionXY'][0])
pln[whichplane[i]]['cY'].append(si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['centerXY'][1])
pln[whichplane[i]]['cX'].append(si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['centerXY'][0])
pln[whichplane[i]]['szY'].append(si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['sizeXY'][1])
pln[whichplane[i]]['szX'].append(si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['sizeXY'][0])
mmPerPix_Y=si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['pixelToRefTransform'][1][1]
mmPerPix_X=si_rois[whichroi[i]]['scanfields'][whichscanfield[i]]['pixelToRefTransform'][0][0]
else:
pln[whichplane[i]]['Ly'].append(si_rois[whichroi[i]]['scanfields']['pixelResolutionXY'][1])
pln[whichplane[i]]['Lx'].append(si_rois[whichroi[i]]['scanfields']['pixelResolutionXY'][0])
pln[whichplane[i]]['cY'].append(si_rois[whichroi[i]]['scanfields']['centerXY'][1])
pln[whichplane[i]]['cX'].append(si_rois[whichroi[i]]['scanfields']['centerXY'][0])
pln[whichplane[i]]['szY'].append(si_rois[whichroi[i]]['scanfields']['sizeXY'][1])
pln[whichplane[i]]['szX'].append(si_rois[whichroi[i]]['scanfields']['sizeXY'][0])
mmPerPix_Y=si_rois[whichroi[i]]['scanfields']['pixelToRefTransform'][1][1]
mmPerPix_X=si_rois[whichroi[i]]['scanfields']['pixelToRefTransform'][0][0]
aspect.append(np.array(mmPerPix_Y) / np.array(mmPerPix_X))
# Calculate the flyback lines to remove from lines in the ops
n_rows_sum = np.zeros(nplanes)
n_flybackP = np.zeros(nplanes)
for p in range(0,nplanes):
n_rows_sum[p] = sum(pln[p]['Ly'])
n_flybackP[p] = (tiff_dim[1] - n_rows_sum[p]) / max(1, (nroisPerPlane[p] - 1))
# deduce flyback from most filled z-plane
n_flyback = np.min(n_flybackP)
# Calculate some values to extract the rows in the tiff files for each ROI
muX=[]; muY=[]; iminX=[]; iminY=[]; irow1=[]; irow2=[]; allLx=[]; allLy=[]
for p in range(0,nplanes):
pln[p]['cX'] = np.array(pln[p]['cX']) - np.array(pln[p]['szX'])/2
pln[p]['cX'] = pln[p]['cX'] - np.min(pln[p]['cX'])
pln[p]['cY'] = np.array(pln[p]['cY']) - np.array(pln[p]['szY'])/2
pln[p]['cY'] = pln[p]['cY'] - np.min(pln[p]['cY'])
for r in range(0,int(nroisPerPlane[p])):
allLx.append(pln[p]['Lx'][r])
allLy.append(pln[p]['Ly'][r])
muX = np.array(pln[p]['Lx'][r])/np.array(pln[p]['szX'][r])
muY = np.array(pln[p]['Ly'][r])/np.array(pln[p]['szY'][r])
iminX.append(pln[p]['cX'][r] * muX)
iminY.append(pln[p]['cY'][r] * muY)
irow_tmp = np.delete(np.insert(np.cumsum(np.array(pln[p]['Ly']) + n_flyback), 0, 0),-1,0)
irow_tmp2=irow_tmp + np.array(pln[p]['Ly'])
irow1.append(list(irow_tmp))
irow2.append(list(irow_tmp2))
irow1=[item for row in irow1 for item in row]
irow2=[item for row in irow2 for item in row]
# Use the diameter in ops to indicate the aspect ratio of pixels (suite2p convention)
# Note: suite2p only uses a list of two values (for the first plane) and
# assumes it is the same for other planes (copies). I added diameters
# that includes values for each plane and sligtly modified suite2p to
# update diameter with the right info for the currently run plane
diameter=[]
for a in range(0,len(aspect)):
diameter.append(10)
diameter.append(round(10*aspect[a]))
# added nroisPerPlane to help detect/run multi-plane datasets in suite2p
nroisPerPlane=nroisPerPlane[nroisPerPlane>0]
# create OPS according to the default in suite2p and overwrite some values
ops=suite2p.default_ops()
if nplanes == 1:
ops['fs'] = fsF
else:
ops['fs'] = fsV
ops['nchannels'] = nChannels
ops['nrois'] = nrois
ops['nroisPerPlane'] = list(np.int16(nroisPerPlane))
ops['iplane'] = whichplane
ops['nplanes'] = len(whichplane)
if nrois * nplanes == 1:
ops['mesoscan'] = 0
else:
ops['mesoscan'] = 1
ops['diameter']=diameter[:2]
ops['diameters']=diameter
ops['num_workers_roi'] = 5
ops['keep_movie_raw'] = 1
ops['delete_bin'] = 0
ops['batch_size'] = 500
ops['nimg_init'] = 300
ops['tau'] = 1.5
ops['combined'] = 1
ops['nonrigid'] = 1
ops['save_mat'] = 0
ops['anatomical_only'] = 0
ops['cellprob_threshold'] = 0.5
ops['aspect'] = 1.0
ops['aspects'] = aspect
if ops['mesoscan']:
ops['allLx']=allLx
ops['allLy']=allLy
ops['dx']=[]; ops['dy']=[]; ops['lines']=[]
for i in range(0,len(aspect)):
ops['dx'].append(int(iminX[i]))
ops['dy'].append(int(iminY[i]))
ops['lines'].append([x for x in range(int(irow1[i]),int(irow2[i]))])
# add the paths for the data
ops['data_path'] = [dat.rawPath]
ops['save_path0'] = os.path.join(basepath, 's2p_analysis', dat.cohort,
dat.mouseID, dat.week, dat.session, dat.expID)
ops['save_folder'] = 'suite2p_' + db['pipeline']
ops['fast_disk'] = os.path.join(basepath, 's2p_binaries', dat.cohort,
dat.mouseID, dat.week, dat.session, dat.expID)
ops = {**ops, **db}
# create folders
os.makedirs(ops['save_path0'], exist_ok=True)
os.makedirs(ops['fast_disk'], exist_ok=True)
# save the ops
np.save(os.path.join(ops['save_path0'], 'ops_' + db['pipeline']),ops)
return ops