forked from GERSL/Fmask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inpaint_nans.m
591 lines (487 loc) · 16.2 KB
/
inpaint_nans.m
1
function B=inpaint_nans(A,method)% INPAINT_NANS: in-paints over nans in an array% usage: B=INPAINT_NANS(A) % default method% usage: B=INPAINT_NANS(A,method) % specify method used%% Solves approximation to one of several pdes to% interpolate and extrapolate holes in an array%% arguments (input):% A - nxm array with some NaNs to be filled in%% method - (OPTIONAL) scalar numeric flag - specifies% which approach (or physical metaphor to use% for the interpolation.) All methods are capable% of extrapolation, some are better than others.% There are also speed differences, as well as% accuracy differences for smooth surfaces.%% methods {0,1,2} use a simple plate metaphor.% method 3 uses a better plate equation,% but may be much slower and uses% more memory.% method 4 uses a spring metaphor.% method 5 is an 8 neighbor average, with no% rationale behind it compared to the% other methods. I do not recommend% its use.%% method == 0 --> (DEFAULT) see method 1, but% this method does not build as large of a% linear system in the case of only a few% NaNs in a large array.% Extrapolation behavior is linear.% % method == 1 --> simple approach, applies del^2% over the entire array, then drops those parts% of the array which do not have any contact with% NaNs. Uses a least squares approach, but it% does not modify known values.% In the case of small arrays, this method is% quite fast as it does very little extra work.% Extrapolation behavior is linear.% % method == 2 --> uses del^2, but solving a direct% linear system of equations for nan elements.% This method will be the fastest possible for% large systems since it uses the sparsest% possible system of equations. Not a least% squares approach, so it may be least robust% to noise on the boundaries of any holes.% This method will also be least able to% interpolate accurately for smooth surfaces.% Extrapolation behavior is linear.%% Note: method 2 has problems in 1-d, so this% method is disabled for vector inputs.% % method == 3 --+ See method 0, but uses del^4 for% the interpolating operator. This may result% in more accurate interpolations, at some cost% in speed.% % method == 4 --+ Uses a spring metaphor. Assumes% springs (with a nominal length of zero)% connect each node with every neighbor% (horizontally, vertically and diagonally)% Since each node tries to be like its neighbors,% extrapolation is as a constant function where% this is consistent with the neighboring nodes.%% method == 5 --+ See method 2, but use an average% of the 8 nearest neighbors to any element.% This method is NOT recommended for use.%%% arguments (output):% B - nxm array with NaNs replaced%%% Example:% [x,y] = meshgrid(0:.01:1);% z0 = exp(x+y);% znan = z0;% znan(20:50,40:70) = NaN;% znan(30:90,5:10) = NaN;% znan(70:75,40:90) = NaN;%% z = inpaint_nans(znan);%%% See also: griddata, interp1%% Author: John D'Errico% e-mail address: [email protected]% Release: 2% Release date: 4/15/06% I always need to know which elements are NaN,% and what size the array is for any method[n,m]=size(A);A=A(:);nm=n*m;k=isnan(A(:));% list the nodes which are known, and which will% be interpolatednan_list=find(k);known_list=find(~k);% how many nans overallnan_count=length(nan_list);% convert NaN indices to (r,c) form% nan_list==find(k) are the unrolled (linear) indices% (row,column) form[nr,nc]=ind2sub([n,m],nan_list);% both forms of index in one array:% column 1 == unrolled index% column 2 == row index% column 3 == column indexnan_list=[nan_list,nr,nc];% supply default methodif (nargin<2) || isempty(method) method = 0;elseif ~ismember(method,0:5) error 'If supplied, method must be one of: {0,1,2,3,4,5}.'end% for different methodsswitch method case 0 % The same as method == 1, except only work on those % elements which are NaN, or at least touch a NaN. % is it 1-d or 2-d? if (m == 1) || (n == 1) % really a 1-d case work_list = nan_list(:,1); work_list = unique([work_list;work_list - 1;work_list + 1]); work_list(work_list <= 1) = []; work_list(work_list >= nm) = []; nw = numel(work_list); u = (1:nw)'; fda = sparse(repmat(u,1,3),bsxfun(@plus,work_list,-1:1), ... repmat([1 -2 1],nw,1),nw,nm); else % a 2-d case % horizontal and vertical neighbors only talks_to = [-1 0;0 -1;1 0;0 1]; neighbors_list=identify_neighbors(n,m,nan_list,talks_to); % list of all nodes we have identified all_list=[nan_list;neighbors_list]; % generate sparse array with second partials on row % variable for each element in either list, but only % for those nodes which have a row index > 1 or < n L = find((all_list(:,2) > 1) & (all_list(:,2) < n)); nl=length(L); if nl>0 fda=sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-1 0 1],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); else fda=spalloc(n*m,n*m,size(all_list,1)*5); end % 2nd partials on column index L = find((all_list(:,3) > 1) & (all_list(:,3) < m)); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-n 0 n],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); end end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list(:,1)),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 1 % least squares approach with del^2. Build system % for every array element as an unknown, and then % eliminate those which are knowns. % Build sparse matrix approximating del^2 for % every element in A. % is it 1-d or 2-d? if (m == 1) || (n == 1) % a 1-d case u = (1:(nm-2))'; fda = sparse(repmat(u,1,3),bsxfun(@plus,u,0:2), ... repmat([1 -2 1],nm-2,1),nm-2,nm); else % a 2-d case % Compute finite difference for second partials % on row variable first [i,j]=ndgrid(2:(n-1),1:m); ind=i(:)+(j(:)-1)*n; np=(n-2)*m; fda=sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... repmat([1 -2 1],np,1),n*m,n*m); % now second partials on column variable [i,j]=ndgrid(1:n,2:(m-1)); ind=i(:)+(j(:)-1)*n; np=n*(m-2); fda=fda+sparse(repmat(ind,1,3),[ind-n,ind,ind+n], ... repmat([1 -2 1],np,1),nm,nm); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 2 % Direct solve for del^2 BVP across holes % generate sparse array with second partials on row % variable for each nan element, only for those nodes % which have a row index > 1 or < n % is it 1-d or 2-d? if (m == 1) || (n == 1) % really just a 1-d case error('Method 2 has problems for vector input. Please use another method.') else % a 2-d case L = find((nan_list(:,2) > 1) & (nan_list(:,2) < n)); nl=length(L); if nl>0 fda=sparse(repmat(nan_list(L,1),1,3), ... repmat(nan_list(L,1),1,3)+repmat([-1 0 1],nl,1), ... repmat([1 -2 1],nl,1),n*m,n*m); else fda=spalloc(n*m,n*m,size(nan_list,1)*5); end % 2nd partials on column index L = find((nan_list(:,3) > 1) & (nan_list(:,3) < m)); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,3), ... repmat(nan_list(L,1),1,3)+repmat([-n 0 n],nl,1), ... repmat([1 -2 1],nl,1),n*m,n*m); end % fix boundary conditions at extreme corners % of the array in case there were nans there if ismember(1,nan_list(:,1)) fda(1,[1 2 n+1])=[-2 1 1]; end if ismember(n,nan_list(:,1)) fda(n,[n, n-1,n+n])=[-2 1 1]; end if ismember(nm-n+1,nan_list(:,1)) fda(nm-n+1,[nm-n+1,nm-n+2,nm-n])=[-2 1 1]; end if ismember(nm,nan_list(:,1)) fda(nm,[nm,nm-1,nm-n])=[-2 1 1]; end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); % and solve... B=A; k=nan_list(:,1); B(k)=fda(k,k)\rhs(k); end case 3 % The same as method == 0, except uses del^4 as the % interpolating operator. % del^4 template of neighbors talks_to = [-2 0;-1 -1;-1 0;-1 1;0 -2;0 -1; ... 0 1;0 2;1 -1;1 0;1 1;2 0]; neighbors_list=identify_neighbors(n,m,nan_list,talks_to); % list of all nodes we have identified all_list=[nan_list;neighbors_list]; % generate sparse array with del^4, but only % for those nodes which have a row & column index % >= 3 or <= n-2 L = find( (all_list(:,2) >= 3) & ... (all_list(:,2) <= (n-2)) & ... (all_list(:,3) >= 3) & ... (all_list(:,3) <= (m-2))); nl=length(L); if nl>0 % do the entire template at once fda=sparse(repmat(all_list(L,1),1,13), ... repmat(all_list(L,1),1,13) + ... repmat([-2*n,-n-1,-n,-n+1,-2,-1,0,1,2,n-1,n,n+1,2*n],nl,1), ... repmat([1 2 -8 2 1 -8 20 -8 1 2 -8 2 1],nl,1),nm,nm); else fda=spalloc(n*m,n*m,size(all_list,1)*5); end % on the boundaries, reduce the order around the edges L = find((((all_list(:,2) == 2) | ... (all_list(:,2) == (n-1))) & ... (all_list(:,3) >= 2) & ... (all_list(:,3) <= (m-1))) | ... (((all_list(:,3) == 2) | ... (all_list(:,3) == (m-1))) & ... (all_list(:,2) >= 2) & ... (all_list(:,2) <= (n-1)))); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,5), ... repmat(all_list(L,1),1,5) + ... repmat([-n,-1,0,+1,n],nl,1), ... repmat([1 1 -4 1 1],nl,1),nm,nm); end L = find( ((all_list(:,2) == 1) | ... (all_list(:,2) == n)) & ... (all_list(:,3) >= 2) & ... (all_list(:,3) <= (m-1))); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3) + ... repmat([-n,0,n],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); end L = find( ((all_list(:,3) == 1) | ... (all_list(:,3) == m)) & ... (all_list(:,2) >= 2) & ... (all_list(:,2) <= (n-1))); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3) + ... repmat([-1,0,1],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list(:,1)),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 4 % Spring analogy % interpolating operator. % list of all springs between a node and a horizontal % or vertical neighbor hv_list=[-1 -1 0;1 1 0;-n 0 -1;n 0 1]; hv_springs=[]; for i=1:4 hvs=nan_list+repmat(hv_list(i,:),nan_count,1); k=(hvs(:,2)>=1) & (hvs(:,2)<=n) & (hvs(:,3)>=1) & (hvs(:,3)<=m); hv_springs=[hv_springs;[nan_list(k,1),hvs(k,1)]]; end % delete replicate springs hv_springs=unique(sort(hv_springs,2),'rows'); % build sparse matrix of connections, springs % connecting diagonal neighbors are weaker than % the horizontal and vertical springs nhv=size(hv_springs,1); springs=sparse(repmat((1:nhv)',1,2),hv_springs, ... repmat([1 -1],nhv,1),nhv,nm); % eliminate knowns rhs=-springs(:,known_list)*A(known_list); % and solve... B=A; B(nan_list(:,1))=springs(:,nan_list(:,1))\rhs; case 5 % Average of 8 nearest neighbors % generate sparse array to average 8 nearest neighbors % for each nan element, be careful around edges fda=spalloc(n*m,n*m,size(nan_list,1)*9); % -1,-1 L = find((nan_list(:,2) > 1) & (nan_list(:,3) > 1)); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([-n-1, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % 0,-1 L = find(nan_list(:,3) > 1); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([-n, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % +1,-1 L = find((nan_list(:,2) < n) & (nan_list(:,3) > 1)); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([-n+1, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % -1,0 L = find(nan_list(:,2) > 1); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([-1, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % +1,0 L = find(nan_list(:,2) < n); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([1, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % -1,+1 L = find((nan_list(:,2) > 1) & (nan_list(:,3) < m)); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([n-1, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % 0,+1 L = find(nan_list(:,3) < m); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([n, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % +1,+1 L = find((nan_list(:,2) < n) & (nan_list(:,3) < m)); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,2), ... repmat(nan_list(L,1),1,2)+repmat([n+1, 0],nl,1), ... repmat([1 -1],nl,1),n*m,n*m); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); % and solve... B=A; k=nan_list(:,1); B(k)=fda(k,k)\rhs(k); end% all done, make sure that B is the same shape as% A was when we came in.B=reshape(B,n,m);% ====================================================% end of main function% ====================================================% ====================================================% begin subfunctions% ====================================================function neighbors_list=identify_neighbors(n,m,nan_list,talks_to)% identify_neighbors: identifies all the neighbors of% those nodes in nan_list, not including the nans% themselves%% arguments (input):% n,m - scalar - [n,m]=size(A), where A is the% array to be interpolated% nan_list - array - list of every nan element in A% nan_list(i,1) == linear index of i'th nan element% nan_list(i,2) == row index of i'th nan element% nan_list(i,3) == column index of i'th nan element% talks_to - px2 array - defines which nodes communicate% with each other, i.e., which nodes are neighbors.%% talks_to(i,1) - defines the offset in the row% dimension of a neighbor% talks_to(i,2) - defines the offset in the column% dimension of a neighbor% % For example, talks_to = [-1 0;0 -1;1 0;0 1]% means that each node talks only to its immediate% neighbors horizontally and vertically.% % arguments(output):% neighbors_list - array - list of all neighbors of% all the nodes in nan_listif ~isempty(nan_list) % use the definition of a neighbor in talks_to nan_count=size(nan_list,1); talk_count=size(talks_to,1); nn=zeros(nan_count*talk_count,2); j=[1,nan_count]; for i=1:talk_count nn(j(1):j(2),:)=nan_list(:,2:3) + ... repmat(talks_to(i,:),nan_count,1); j=j+nan_count; end % drop those nodes which fall outside the bounds of the % original array L = (nn(:,1)<1)|(nn(:,1)>n)|(nn(:,2)<1)|(nn(:,2)>m); nn(L,:)=[]; % form the same format 3 column array as nan_list neighbors_list=[sub2ind([n,m],nn(:,1),nn(:,2)),nn]; % delete replicates in the neighbors list neighbors_list=unique(neighbors_list,'rows'); % and delete those which are also in the list of NaNs. neighbors_list=setdiff(neighbors_list,nan_list,'rows'); else neighbors_list=[];end