forked from Zhang-Zhi-Jie/Pytorch-MSCRED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
64 lines (57 loc) · 2.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn as nn
import torch.functional as F
from tqdm import tqdm
from model.mscred import MSCRED
from utils.data import load_data
import matplotlib.pyplot as plt
import numpy as np
import os
def train(dataLoader, model, optimizer, epochs, device):
model = model.to(device)
print("------training on {}-------".format(device))
for epoch in range(epochs):
train_l_sum,n = 0.0, 0
for x in tqdm(dataLoader):
x = x.to(device)
x = x.squeeze()
#print(type(x))
l = torch.mean((model(x)-x[-1].unsqueeze(0))**2)
train_l_sum += l
optimizer.zero_grad()
l.backward()
optimizer.step()
n += 1
#print("[Epoch %d/%d][Batch %d/%d] [loss: %f]" % (epoch+1, epochs, n, len(dataLoader), l.item()))
print("[Epoch %d/%d] [loss: %f]" % (epoch+1, epochs, train_l_sum/n))
def test(dataLoader, model):
print("------Testing-------")
index = 800
loss_list = []
reconstructed_data_path = "./data/matrix_data/reconstructed_data/"
with torch.no_grad():
for x in dataLoader:
x = x.to(device)
x = x.squeeze()
reconstructed_matrix = model(x)
path_temp = os.path.join(reconstructed_data_path, 'reconstructed_data_' + str(index) + ".npy")
np.save(path_temp, reconstructed_matrix.cpu().detach().numpy())
# l = criterion(reconstructed_matrix, x[-1].unsqueeze(0)).mean()
# loss_list.append(l)
# print("[test_index %d] [loss: %f]" % (index, l.item()))
index += 1
if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device is", device)
dataLoader = load_data()
mscred = MSCRED(3, 256)
# 训练阶段
# mscred.load_state_dict(torch.load("./checkpoints/model1.pth"))
optimizer = torch.optim.Adam(mscred.parameters(), lr = 0.0002)
train(dataLoader["train"], mscred, optimizer, 10, device)
print("保存模型中....")
torch.save(mscred.state_dict(), "./checkpoints/model2.pth")
# # 测试阶段
mscred.load_state_dict(torch.load("./checkpoints/model2.pth"))
mscred.to(device)
test(dataLoader["test"], mscred)