forked from evykassirer/pink-trombone
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSimplexNoise.cpp
321 lines (286 loc) · 11.6 KB
/
SimplexNoise.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/**
* @file SimplexNoise.cpp
* @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D, 4D).
*
* Copyright (c) 2014-2015 Sebastien Rombauts ([email protected])
*
* This C++ implementation is based on the speed-improved Java version 2012-03-09
* by Stefan Gustavson (original Java source code in the public domain).
* http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java:
* - Based on example code by Stefan Gustavson ([email protected]).
* - Optimisations by Peter Eastman ([email protected]).
* - Better rank ordering method by Stefan Gustavson in 2012.
*
* This implementation is "Simplex Noise" as presented by
* Ken Perlin at a relatively obscure and not often cited course
* session "Real-Time Shading" at Siggraph 2001 (before real
* time shading actually took on), under the title "hardware noise".
* The 3D function is numerically equivalent to his Java reference
* code available in the PDF course notes, although I re-implemented
* it from scratch to get more readable code. The 1D, 2D and 4D cases
* were implemented from scratch by me from Ken Perlin's text.
*
* Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt
* or copy at http://opensource.org/licenses/MIT)
*/
#include "SimplexNoise.h"
#include <cstdint> // int32_t/uint8_t
/**
* Computes the largest integer value not greater than the float one
*
* This method is faster than using (int32_t)std::floor(fp).
*
* I measured it to be approximately twice as fast:
* float: ~18.4ns instead of ~39.6ns on an AMD APU),
* double: ~20.6ns instead of ~36.6ns on an AMD APU),
* Reference: http://www.codeproject.com/Tips/700780/Fast-floor-ceiling-functions
*
* @param[in] fp float input value
*
* @return largest integer value not greater than fp
*/
static inline int32_t fastfloor(float fp) {
int32_t i = (int32_t)fp;
return (fp < i) ? (i - 1) : (i);
}
/**
* Permutation table. This is just a random jumble of all numbers 0-255.
*
* This produce a repeatable pattern of 256, but Ken Perlin stated
* that it is not a problem for graphic texture as the noise features disappear
* at a distance far enough to be able to see a repeatable pattern of 256.
*
* This needs to be exactly the same for all instances on all platforms,
* so it's easiest to just keep it as static explicit data.
* This also removes the need for any initialisation of this class.
*
* Note that making this an uint32_t[] instead of a uint8_t[] might make the
* code run faster on platforms with a high penalty for unaligned single
* byte addressing. Intel x86 is generally single-byte-friendly, but
* some other CPUs are faster with 4-aligned reads.
* However, a char[] is smaller, which avoids cache trashing, and that
* is probably the most important aspect on most architectures.
* This array is accessed a *lot* by the noise functions.
* A vector-valued noise over 3D accesses it 96 times, and a
* float-valued 4D noise 64 times. We want this to fit in the cache!
*/
static const uint8_t perm[256] = {
151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
};
/**
* Helper function to hash an integer using the above permutation table
*
* This inline function costs around 1ns, and is called N+1 times for a noise of N dimension.
*
* Using a real hash function would be better to improve the "repeatability of 256" of the above permutation table,
* but fast integer Hash functions uses more time and have bad random properties.
*
* @param[in] i Integer value to hash
*
* @return 8-bits hashed value
*/
static inline uint8_t hash(int32_t i) {
return perm[static_cast<uint8_t>(i)];
}
/* NOTE Gradient table to test if lookup-table are more efficient than calculs
static const float gradients1D[16] = {
-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f,
1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f
};
*/
/**
* Helper function to compute gradients-dot-residual vectors (1D)
*
* @note that these generate gradients of more than unit length. To make
* a close match with the value range of classic Perlin noise, the final
* noise values need to be rescaled to fit nicely within [-1,1].
* (The simplex noise functions as such also have different scaling.)
* Note also that these noise functions are the most practical and useful
* signed version of Perlin noise.
*
* @param[in] hash hash value
* @param[in] x distance to the corner
*
* @return gradient value
*/
static float grad(int32_t hash, float x) {
int32_t h = hash & 0x0F; // Convert low 4 bits of hash code
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
// float grad = gradients1D[h]; // NOTE : Test of Gradient look-up table instead of the above
return (grad * x); // Multiply the gradient with the distance
}
/**
* Helper functions to compute gradients-dot-residual vectors (2D)
*
* @param[in] hash hash value
* @param[in] x x coord of the distance to the corner
* @param[in] y y coord of the distance to the corner
*
* @return gradient value
*/
static float grad(int32_t hash, float x, float y) {
int32_t h = hash & 0x3F; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f*v : 2.0f*v);
}
/**
* 1D Perlin simplex noise
*
* Takes around 74ns on an AMD APU.
*
* @param[in] x float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::noise(float x) {
float n0, n1; // Noise contributions from the two "corners"
// No need to skew the input space in 1D
// Corners coordinates (nearest integer values):
int32_t i0 = fastfloor(x);
int32_t i1 = i0 + 1;
// Distances to corners (between 0 and 1):
float x0 = x - i0;
float x1 = x0 - 1.0f;
// Calculate the contribution from the first corner
float t0 = 1.0f - x0*x0;
// if(t0 < 0.0f) t0 = 0.0f; // not possible
t0 *= t0;
n0 = t0 * t0 * grad(hash(i0), x0);
// Calculate the contribution from the second corner
float t1 = 1.0f - x1*x1;
// if(t1 < 0.0f) t1 = 0.0f; // not possible
t1 *= t1;
n1 = t1 * t1 * grad(hash(i1), x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
/**
* 2D Perlin simplex noise
*
* Takes around 150ns on an AMD APU.
*
* @param[in] x float coordinate
* @param[in] y float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::noise(float x, float y) {
float n0, n1, n2; // Noise contributions from the three corners
// Skewing/Unskewing factors for 2D
const float F2 = 0.366025403f; // F2 = (sqrt(3) - 1) / 2
const float G2 = 0.211324865f; // G2 = (3 - sqrt(3)) / 6 = F2 / (1 + 2 * K)
// Skew the input space to determine which simplex cell we're in
float s = (x + y) * F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int32_t i = fastfloor(xs);
int32_t j = fastfloor(ys);
// Unskew the cell origin back to (x,y) space
float t = static_cast<float>(i + j) * G2;
float X0 = i - t;
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int32_t i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1;
j1 = 0;
} else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
i1 = 0;
j1 = 1;
}
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Calculate the contribution from the first corner
float t0 = 0.5f - x0*x0 - y0*y0;
if (t0 < 0.0f) {
n0 = 0.0f;
} else {
t0 *= t0;
n0 = t0 * t0 * grad(hash(i + hash(j)), x0, y0);
}
// Calculate the contribution from the second corner
float t1 = 0.5f - x1*x1 - y1*y1;
if (t1 < 0.0f) {
n1 = 0.0f;
} else {
t1 *= t1;
n1 = t1 * t1 * grad(hash(i + i1 + hash(j + j1)), x1, y1);
}
// Calculate the contribution from the third corner
float t2 = 0.5f - x2*x2 - y2*y2;
if (t2 < 0.0f) {
n2 = 0.0f;
} else {
t2 *= t2;
n2 = t2 * t2 * grad(hash(i + 1 + hash(j + 1)), x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 45.23065f * (n0 + n1 + n2);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 1D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::fractal(size_t octaves, float x) const {
float output = 0.f;
float denom = 0.f;
float frequency = mFrequency;
float amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 2D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x x float coordinate
* @param[in] y y float coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
float SimplexNoise::fractal(size_t octaves, float x, float y) const {
float output = 0.f;
float denom = 0.f;
float frequency = mFrequency;
float amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency, y * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}