-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_ade20k_ins_seg.py
112 lines (90 loc) · 3.96 KB
/
prepare_ade20k_ins_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import glob
import json
import os
from collections import Counter
import numpy as np
import tqdm
from panopticapi.utils import IdGenerator, save_json
from PIL import Image
import pycocotools.mask as mask_util
if __name__ == "__main__":
dataset_dir = os.getenv("DETECTRON2_DATASETS", "datasets")
for name, dirname in [("train", "training"), ("val", "validation")]:
image_dir = os.path.join(dataset_dir, f"ADEChallengeData2016/images/{dirname}/")
instance_dir = os.path.join(
dataset_dir, f"ADEChallengeData2016/annotations_instance/{dirname}/"
)
# img_id = 0
ann_id = 1
# json
out_file = os.path.join(dataset_dir, f"ADEChallengeData2016/ade20k_instance_{name}.json")
# json config
instance_config_file = "datasets/ade20k_instance_imgCatIds.json"
with open(instance_config_file) as f:
category_dict = json.load(f)["categories"]
# load catid mapping
# it is important to share category id for both instance and panoptic annotations
mapping_file = "datasets/ade20k_instance_catid_mapping.txt"
with open(mapping_file) as f:
map_id = {}
for i, line in enumerate(f.readlines()):
if i == 0:
continue
ins_id, sem_id, _ = line.strip().split()
# shift id by 1 because we want it to start from 0!
# ignore_label becomes 255
map_id[int(ins_id)] = int(sem_id) - 1
for cat in category_dict:
cat["id"] = map_id[cat["id"]]
filenames = sorted(glob.glob(os.path.join(image_dir, "*.jpg")))
ann_dict = {}
images = []
annotations = []
for idx, filename in enumerate(tqdm.tqdm(filenames)):
image = {}
image_id = os.path.basename(filename).split(".")[0]
image["id"] = image_id
image["file_name"] = os.path.basename(filename)
original_format = np.array(Image.open(filename))
image["width"] = original_format.shape[1]
image["height"] = original_format.shape[0]
images.append(image)
filename_instance = os.path.join(instance_dir, image_id + ".png")
ins_seg = np.asarray(Image.open(filename_instance))
assert ins_seg.dtype == np.uint8
instance_cat_ids = ins_seg[..., 0]
# instance id starts from 1!
# because 0 is reserved as VOID label
instance_ins_ids = ins_seg[..., 1]
# process things
for thing_id in np.unique(instance_ins_ids):
if thing_id == 0:
continue
mask = instance_ins_ids == thing_id
instance_cat_id = np.unique(instance_cat_ids[mask])
assert len(instance_cat_id) == 1
anno = {}
anno['id'] = ann_id
ann_id += 1
anno['image_id'] = image['id']
anno["iscrowd"] = int(0)
anno["category_id"] = int(map_id[instance_cat_id[0]])
inds = np.nonzero(mask)
ymin, ymax = inds[0].min(), inds[0].max()
xmin, xmax = inds[1].min(), inds[1].max()
anno["bbox"] = [int(xmin), int(ymin), int(xmax - xmin + 1), int(ymax - ymin + 1)]
# if xmax <= xmin or ymax <= ymin:
# continue
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
anno["segmentation"] = rle
anno["area"] = int(mask_util.area(rle))
annotations.append(anno)
# save this
ann_dict['images'] = images
ann_dict['categories'] = category_dict
ann_dict['annotations'] = annotations
save_json(ann_dict, out_file)