forked from amazon-science/polygon-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
408 lines (338 loc) · 15 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import torch
import numpy as np
from fairseq import utils,tasks
from utils.checkpoint_utils import load_model_ensemble_and_task
from utils.eval_utils import eval_step
from tasks.refcoco import RefcocoTask
from models.polyformer import PolyFormerModel
from PIL import Image
import cv2
import math
from skimage import draw
tasks.register_task('refcoco', RefcocoTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = True
# Load pretrained ckpt & config
overrides={"bpe_dir":"utils/BPE"}
models, cfg, task = load_model_ensemble_and_task(
utils.split_paths('run_scripts/finetune/polyformer_b_aihub_indoor_80_checkpoints/100_5e-5_512/checkpoint_epoch_21.pt'),
arg_overrides=overrides
)
cfg.common.seed = 7
cfg.generation.beam = 5
cfg.generation.min_len = 12
cfg.generation.max_len_a = 0
cfg.generation.max_len_b = 420
cfg.generation.no_repeat_ngram_size = 3
cfg.task.patch_image_size = 512
# from bert.tokenization_bert import BertTokenizer
# tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
# Image transform
from torchvision import transforms
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
# Text preprocess
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
# Construct input for refcoco task
patch_image_size = cfg.task.patch_image_size
def construct_sample(image: Image, text: str):
w, h = image.size
w_resize_ratio = torch.tensor(patch_image_size / w).unsqueeze(0)
h_resize_ratio = torch.tensor(patch_image_size / h).unsqueeze(0)
patch_image = patch_resize_transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
prompt = ' which region does the text " {} " describe?'.format(text)
tokenized = tokenizer.batch_encode_plus([prompt], padding="longest", return_tensors="pt")
src_tokens = tokenized["input_ids"]
att_masks = tokenized["attention_mask"]
src_lengths = torch.LongTensor(att_masks.ne(0).long().sum())
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"att_masks": att_masks,
"patch_images": patch_image,
"patch_masks": patch_mask,
},
"w_resize_ratios": w_resize_ratio,
"h_resize_ratios": h_resize_ratio,
"region_coords": torch.randn(1, 4),
"label": np.zeros((512,512)),
"poly": 'None',
"text": text
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
from io import BytesIO
import base64
import re
def pre_caption(caption):
caption = caption.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ').replace('<person>', 'person')
caption = re.sub(
r"\s{2,}",
' ',
caption,
)
caption = caption.rstrip('\n')
caption = caption.strip(' ')
return caption
def convert_pts(coeffs):
pts = []
for i in range(len(coeffs) // 2):
pts.append([coeffs[2 * i + 1], coeffs[2 * i]]) # y, x
return np.array(pts, np.int32)
def get_mask_from_codes(codes, img_size):
masks = [np.zeros(img_size)]
for code in codes:
mask = draw.polygon2mask(img_size, convert_pts(code))
mask = np.array(mask, np.uint8)
masks.append(mask)
mask = sum(masks)
mask = mask > 0
return mask.astype(np.uint8)
def overlay_predictions(img, mask=None, polygons=None, bbox=None, color_box=(0, 255, 0), color_mask=[255, 102, 102], color_poly=[255, 0, 0], thickness=3, radius=6):
overlayed = img.copy()
if bbox is not None:
overlayed = draw_bbox(overlayed, bbox, color=color_box, thickness=thickness)
if mask is not None:
overlayed = overlay_davis(overlayed, mask, colors=[[0, 0, 0], color_mask])
if polygons is not None:
overlayed = plot_polygons(overlayed, polygons, color=color_poly, radius=radius)
return overlayed
def overlay_davis(image, mask, colors=[[0, 0, 0], [255, 102, 102]], cscale=1, alpha=0.4): # [255, 178, 102] orange [102, 178, 255] red
from scipy.ndimage.morphology import binary_dilation
colors = np.reshape(colors, (-1, 3))
colors = np.atleast_2d(colors) * cscale
im_overlay = image.copy()
object_ids = np.unique(mask)
h_i, w_i = image.shape[0:2]
h_m, w_m = mask.shape[0:2]
if h_i != h_m:
mask = cv2.resize(mask, [h_i, w_i], interpolation=cv2.INTER_NEAREST)
for object_id in object_ids[1:]:
# Overlay color on binary mask
foreground = image*alpha + np.ones(image.shape)*(1-alpha) * np.array(colors[object_id])
binary_mask = mask == object_id
# Compose image
im_overlay[binary_mask] = foreground[binary_mask]
return im_overlay.astype(image.dtype)
def draw_bbox(img, box, color=(0, 255, 0), thickness=2):
x1, y1, x2, y2 = box
return cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=thickness)
def plot_polygons(img, polygons, color=(255, 0, 0), radius=7):
for polygon in polygons:
if len(polygon) > 0:
polygon = np.reshape(polygon[:len(polygon)-len(polygon)%2], (len(polygon)//2, 2)).astype(np.int16)
for i, point in enumerate(polygon):
img = cv2.circle(img, point, radius, color, thickness=-1)
img = cv2.circle(img, polygon[0], radius, color, thickness=-1)
return img
def plot_arrow(img, polygons, color=(128, 128, 128), thickness=3, tip_length=0.3):
for polygon in polygons:
if len(polygon) > 0:
polygon = np.reshape(polygon[:len(polygon)-len(polygon)%2], (len(polygon)//2, 2)).astype(np.int16)
for i, point in enumerate(polygon):
if i > 0:
img = cv2.arrowedLine(img, polygon[i-1], point, color, thickness=thickness, tipLength=tip_length)
return img
def downsample_polygon(polygon, ds_rate=25):
points = np.array(polygon).reshape(int(len(polygon) / 2), 2)
points = points[::ds_rate]
return list(points.flatten())
def downsample_polygons(polygons, ds_rate=25):
polygons_ds = []
for polygon in polygons:
polygons_ds.append(downsample_polygon(polygon, ds_rate))
return polygons_ds
def visual_grounding(image, text):
# Construct input sample & preprocess for GPU if cuda available
sample = construct_sample(image, text.lower())
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
with torch.no_grad():
if isinstance(models, list):
model = models[0]
min_len = 6
max_len = 210
model.eval()
img = sample["net_input"]["patch_images"]
b = img.shape[0]
prev_output_token_11 = [[0] for _ in range(b)]
prev_output_token_12 = [[0] for _ in range(b)]
prev_output_token_21 = [[0] for _ in range(b)]
prev_output_token_22 = [[0] for _ in range(b)]
delta_x1 = [[0] for _ in range(b)]
delta_y1 = [[0] for _ in range(b)]
delta_x2 = [[1] for _ in range(b)]
delta_y2 = [[1] for _ in range(b)]
gen_out = [[] for _ in range(b)]
n_bins = 64
unfinish_flag = np.ones(b)
i = 0
encoder_out = model.encoder(
sample['net_input']['src_tokens'],
src_lengths=sample['net_input']['src_lengths'],
att_masks=sample['net_input']['att_masks'],
patch_images=sample['net_input']['patch_images'],
patch_masks=sample['net_input']['patch_masks'],
token_embeddings=None,
return_all_hiddens=False,
sample_patch_num=None
)
attn_masks = []
while i < max_len and unfinish_flag.any():
prev_output_tokens_11_tensor = torch.tensor(np.array(prev_output_token_11)).to(img.device).long()
prev_output_tokens_12_tensor = torch.tensor(np.array(prev_output_token_12)).to(img.device).long()
prev_output_tokens_21_tensor = torch.tensor(np.array(prev_output_token_21)).to(img.device).long()
prev_output_tokens_22_tensor = torch.tensor(np.array(prev_output_token_22)).to(img.device).long()
delta_x1_tensor = torch.tensor(np.array(delta_x1)).to(img.device)
delta_x2_tensor = torch.tensor(np.array(delta_x2)).to(img.device)
delta_y1_tensor = torch.tensor(np.array(delta_y1)).to(img.device)
delta_y2_tensor = torch.tensor(np.array(delta_y2)).to(img.device)
net_output = model.decoder(
prev_output_tokens_11_tensor,
prev_output_tokens_12_tensor,
prev_output_tokens_21_tensor,
prev_output_tokens_22_tensor,
delta_x1_tensor,
delta_y1_tensor,
delta_x2_tensor,
delta_y2_tensor,
code_masks=None,
encoder_out=encoder_out,
features_only=False,
alignment_layer=None,
alignment_heads=None,
src_lengths=sample['net_input']['src_lengths'],
return_all_hiddens=False
)
cls_output = net_output[0]
cls_type = torch.argmax(cls_output, 2)
reg_output = net_output[1].squeeze(-1)
attn = net_output[2]['attn']
attn_arrays = [att.detach().cpu().numpy() for att in attn]
attn_arrays = np.concatenate(attn_arrays, 0)
attn_arrays = np.mean(attn_arrays, 0)
attn_arrays = attn_arrays[i, :256].reshape(16, 16)
h, w = image.size
attn_mask = cv2.resize(attn_arrays.astype(np.float32), (h, w))
attn_masks.append(attn_mask)
for j in range(b):
if unfinish_flag[j] == 1: # prediction is not finished
cls_j = cls_type[j, i].item()
if cls_j == 0 or (cls_j == 2 and i < min_len): # 0 for coordinate tokens; 2 for eos
output_j_x, output_j_y = reg_output[j, i].cpu().numpy()
output_j_x = min(output_j_x, 1)
output_j_y = min(output_j_y, 1)
gen_out[j].extend([output_j_x, output_j_y])
output_j_x = output_j_x * (n_bins - 1)
output_j_y = output_j_y * (n_bins - 1)
output_j_x_floor = math.floor(output_j_x)
output_j_y_floor = math.floor(output_j_y)
output_j_x_ceil = math.ceil(output_j_x)
output_j_y_ceil = math.ceil(output_j_y)
# convert to token
prev_output_token_11[j].append(output_j_x_floor * n_bins + output_j_y_floor + 4)
prev_output_token_12[j].append(output_j_x_floor * n_bins + output_j_y_ceil + 4)
prev_output_token_21[j].append(output_j_x_ceil * n_bins + output_j_y_floor + 4)
prev_output_token_22[j].append(output_j_x_ceil * n_bins + output_j_y_ceil + 4)
delta_x = output_j_x - output_j_x_floor
delta_y = output_j_y - output_j_y_floor
elif cls_j == 1: # 1 for separator tokens
gen_out[j].append(2) # insert 2 indicating separator tokens
prev_output_token_11[j].append(3)
prev_output_token_12[j].append(3)
prev_output_token_21[j].append(3)
prev_output_token_22[j].append(3)
delta_x = 0
delta_y = 0
else: # eos is predicted and i >= min_len
unfinish_flag[j] = 0
gen_out[j].append(-1)
prev_output_token_11[j].append(2) # 2 is eos token
prev_output_token_12[j].append(2) # 2 is eos token
prev_output_token_21[j].append(2) # 2 is eos token
prev_output_token_22[j].append(2) # 2 is eos token
delta_x = 0
delta_y = 0
else: # prediction is finished
gen_out[j].append(-1)
prev_output_token_11[j].append(1) # 1 is padding token
prev_output_token_12[j].append(1)
prev_output_token_21[j].append(1)
prev_output_token_22[j].append(1)
delta_x = 0
delta_y = 0
delta_x1[j].append(delta_x)
delta_y1[j].append(delta_y)
delta_x2[j].append(1 - delta_x)
delta_y2[j].append(1 - delta_y)
i += 1
print("inference step: ", i)
hyps = []
hyps_det = []
n_poly_pred = []
b = len(gen_out)
for i in range(b):
gen_out_i = np.array(gen_out[i])
gen_out_i = gen_out_i[gen_out_i != -1] # excluding eos and padding indices
gen_out_i_det = gen_out_i[:4]
w, h = image.size
gen_out_i_det[::2] *= w
gen_out_i_det[1::2] *= h
polygons_pred = gen_out_i[4:]
polygons_pred = np.append(polygons_pred, [2])
size = len(polygons_pred)
idx_list = [idx for idx, val in
enumerate(polygons_pred) if val == 2] # 2 indicates separator token
polygons_pred[::2] *= w
polygons_pred[1::2] *= h
if len(idx_list) > 0: # multiple polygons
polygons = []
pred_idx = 0
for idx in idx_list:
cur_idx = idx
if pred_idx == cur_idx or pred_idx == size:
pass
else:
polygons.append(polygons_pred[pred_idx: cur_idx])
pred_idx = cur_idx + 1
else:
polygons = [polygons_pred]
n_poly_pred.append(len(polygons))
hyps.append(polygons)
hyps_det.append(gen_out_i_det)
pred_mask = get_mask_from_codes(hyps[0], (h, w))
pred_overlayed = overlay_predictions(np.asarray(image), pred_mask, hyps[0], hyps_det[0])
return pred_overlayed, np.array(pred_mask*255, dtype=np.uint8)