-
Notifications
You must be signed in to change notification settings - Fork 0
/
mask_label.py
75 lines (49 loc) · 1.85 KB
/
mask_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import cv2
from NNHandler_mask import NNHandler_mask
from NNHandler_image import NNHandler_image
from suren.util import Json
from Visualizer import Visualizer
def json_to_text(js : Json, img_handle : NNHandler_image, out_dir : str, mask : bool = None):
data_dir = out_dir + "/data"
label_dir = out_dir + "/label"
if not os.path.exists(data_dir): os.mkdir(data_dir)
if not os.path.exists(label_dir): os.mkdir(label_dir)
data = js.read()
img_handle.open()
for t in range(img_handle.time_series_length):
img =img_handle.read_frame(t)
dic = data[str(t)]
with open(label_dir + "/%s.txt" %t, 'w+') as file:
for p in dic:
x1, y1, x2, y2 = p["x1"], p["y1"], p["x2"], p["y2"]
if mask is None:
mask = p["mask"]
cls = 0 if mask else 1
file.write("{} {} {} {} {}\n".format(cls, x1, y1, x2, y2))
cv2.imwrite(data_dir + "/%s.png"%t, img)
img_handle.close()
dataset = "DEEE"
vid = "cctv2.mp4"
img_loc = "./data/videos/{}/{}".format(dataset, vid)
json_loc = "./data/labels/{}/mask/{}-mask.json".format(dataset, vid.split('.')[0])
visualize = True
verbose = True
tracker = False
overwrite = False
# TEST
img_handle = NNHandler_image(format="avi", img_loc=img_loc)
img_handle.runForBatch()
# NNHandler_mask.weigths_filename = './checkpoints/yolov4-obj_best'
nn_handle = NNHandler_mask(mask_file=json_loc, is_tracked=tracker)
# nn_handle.weigths_filename = './checkpoints/yolov4-obj_best'
if os.path.exists(json_loc) and not overwrite:
nn_handle.init_from_json()
else:
nn_handle.create_yolo(img_handle)
nn_handle.save_json()
vis = Visualizer(person=nn_handle, img=img_handle)
vis.init_vid(vid_show=True)
vis.plot(WAIT=0)
# js = Json(json_loc)
# json_to_text(js, img_handle, "./suren/temp/18", mask=False)