-
Notifications
You must be signed in to change notification settings - Fork 0
/
NNHandler_person.py
151 lines (104 loc) · 4.48 KB
/
NNHandler_person.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import json
import numpy as np
import os, sys
import matplotlib.pyplot as plt
from collections import defaultdict
from NNHandler_yolo import NNHandler_yolo
from NNHandler_image import NNHandler_image, cv2
from Node_Person import Person
from suren.util import Json, eprint
class NNHandler_person(NNHandler_yolo):
weigths_filename = NNHandler_yolo.yolo_dir + '/checkpoints/yolov4-416'
class_names = ["person"]
# Definition of the parameters
max_cosine_distance = 0.4
nn_budget = None
nms_max_overlap = 1.0
iou_thresh = .45
score_thresh = .5
input_size = 416
def __init__(self, json_file=None, is_tracked=True, vis=False, verbose=True, debug=False):
super().__init__(json_file=json_file, is_tracked=is_tracked, vis=vis, verbose=verbose, debug=debug)
print("\t[*] Person detector")
def extractValForKey(self,st,startSt,endSt):
a=st.index(startSt)+len(startSt)
b=st.index(endSt)
return st[a:b].strip()
def refinePersonTrajectory(self,p):
# @ Is this function working?? getparam needs 2 arguments
firstApperanceT=0
lastAppearanceT=p.timeSeriesLength-1
for a in range(p.timeSeriesLength):
if p.getParam("detection")==False:
firstApperanceT=a
for a in range(p.timeSeriesLength-1,-1,-1):
if p.getParam("detection")==False:
lastAppearanceT=a
print("This person is visible only from {} to {} frames".format(firstApperanceT,lastAppearanceT))
def update_graph_nodes(self, start_time=None, end_time = None):
if start_time is None: start_time = 0
if end_time is None: end_time = self.time_series_length
graph = self.graph
if graph.time_series_length is None: graph.time_series_length = end_time-start_time
else: raise Exception("Graph is not empty")
assert len(graph.nodes) == 0, "Graph not empty. Cannot update non-empty graph"
person_dic = defaultdict(dict)
for t in range(start_time, end_time):
try:
yolo_bbox = self.json_data[t]
except KeyError:
try:
yolo_bbox = self.json_data[str(t)] # If reading from json file
except:
continue # No boxes detected
for bbox in yolo_bbox:
idx = bbox["id"]
person_dic[idx][t] = bbox
if -1 in person_dic:
unclassified = person_dic.pop(-1)
# print(person_dic)
for idx in sorted(person_dic):
# TEMP SOLUTION FOR GIHAN
detected = {t : (True if t in person_dic[idx] else False) for t in range(start_time, end_time)}
x_min = [person_dic[idx][t]["x1"] if detected[t] else 0 for t in range(start_time, end_time)]
x_max = [person_dic[idx][t]["x2"] if detected[t] else 0 for t in range(start_time, end_time)]
y_min = [person_dic[idx][t]["y1"] if detected[t] else 0 for t in range(start_time, end_time)]
y_max = [person_dic[idx][t]["y2"] if detected[t] else 0 for t in range(start_time, end_time)]
detected = [detected[t] for t in detected]
p = Person(time_series_length=end_time-start_time,
initParams={"id":idx, "xMin":x_min, "xMax":x_max, "yMin":y_min, "yMax":y_max, "detection":detected})
# print(idx, p.params)
graph.add_person(p)
graph.state["people"] = 2
def runForBatch(self, start_time=None, end_time = None):
self.update_graph_nodes(start_time, end_time)
if __name__=="__main__":
json_loc = "./data/labels/DEEE/yolo/cctv3-yolo.json"
img_loc = "./data/videos/DEEE/cctv3.mp4"
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", "-i", type=str, dest="input", default=img_loc)
parser.add_argument("--output_file", "-o", type=str, dest="output", default=json_loc)
parser.add_argument("--overwrite", "--ow", action="store_true", dest="overwrite")
parser.add_argument("--visualize", "--vis", action="store_true", dest="visualize")
parser.add_argument("--verbose", "--verb", action="store_true", dest="verbose")
parser.add_argument("--tracked", "-t", type=bool, dest="tracked", default=True)
args = parser.parse_args()
args.input = "./data/videos/TownCentreXVID.mp4"
args.output = "./data/labels/TownCentre/person_5.json"
args.overwrite = False
args.verbose=True
args.visualize=True
img_loc = args.input
json_loc = args.output
# TEST
img_handle = NNHandler_image(format="avi", img_loc=img_loc)
img_handle.runForBatch()
person_handler = NNHandler_person(json_file=json_loc, vis=args.visualize, is_tracked=args.tracked, verbose=args.verbose, debug=False)
if os.path.exists(json_loc) and not args.overwrite:
# To load YOLO + DSORT track from json
person_handler.init_from_json()
else:
# To create YOLO + DSORT track and save to json
person_handler.create_yolo(img_handle)
person_handler.save_json()