-
Notifications
You must be signed in to change notification settings - Fork 0
/
planet_atm_bokeh0.12.py
105 lines (78 loc) · 4.36 KB
/
planet_atm_bokeh0.12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
''' Docstring
'''
import numpy as np
import math
import copy
from astropy.io import ascii
from astropy.table import Table
from bokeh.io import output_file, gridplot
from bokeh.plotting import Figure
from bokeh.resources import CDN
from bokeh.embed import components
from bokeh.models import ColumnDataSource, HBox, VBoxForm, HoverTool, Paragraph, Range1d
from bokeh.layouts import Column, Row, WidgetBox
from bokeh.models.widgets import Slider, TextInput, Select
from bokeh.io import hplot, vplot, curdoc
from bokeh.embed import file_html
el = Table.read('data/vpl_models/master_table.fits')
first_spectrum = 0.1 * el['SNOW'][0] + 0.2 * el['CONIFERS'][0] + 0.1 * el['ALGAE'][0] + 0.6 * el['OCEAN'][0]
snow0 = 0.1 * el['SNOW'][0]
conifers0 = 0.2 * el['CONIFERS'][0]
algae0 = 0.1 * el['ALGAE'][0]
ocean0 = 0.6 * el['OCEAN'][0]
full_spectrum = ColumnDataSource(data=dict(w=el['WAVE'][0], f=first_spectrum, snow=snow0, conifers=conifers0, algae=algae0, ocean=ocean0))
atm_plot = Figure(plot_height=400, plot_width=800,
tools="crosshair,hover,pan,reset,resize,save,box_zoom,wheel_zoom", outline_line_color='black',
x_range=[0.2, 1.2], y_range=[0, 0.5], toolbar_location='above')
atm_plot.x_range=Range1d(0.2, 1.2, bounds=(0.2, 1.2))
atm_plot.y_range=Range1d(0.0, 0.5, bounds=(0.0, 0.5))
atm_plot.background_fill_color = "beige"
atm_plot.background_fill_alpha = 0.5
atm_plot.yaxis.axis_label = 'Reflectivity'
atm_plot.xaxis.axis_label = 'Wavelength [micron]'
atm_plot.text([1.], [0.45], ['_________'], text_color='blue', text_font_style='bold')
atm_plot.text([1.], [0.45], ['Combined'], text_color='blue', text_font_style='bold')
atm_plot.text([1.], [0.41], ['Snow'], text_color='grey')
atm_plot.text([1.], [0.38], ['Conifers'], text_color='green')
atm_plot.text([1.], [0.35], ['Red Algae'], text_color='red')
atm_plot.text([1.], [0.32], ['Ocean'], text_color='lightblue')
atm_plot.line('w', 'f', source=full_spectrum, line_width=3, line_color='blue', line_alpha=1.0)
atm_plot.line('w', 'snow', source=full_spectrum, line_width=1, line_color='grey', line_alpha=1.0)
atm_plot.line('w', 'conifers', source=full_spectrum, line_width=1, line_color='green', line_alpha=1.0)
atm_plot.line('w', 'algae', source=full_spectrum, line_width=1, line_color='red', line_alpha=1.0)
atm_plot.line('w', 'ocean', source=full_spectrum, line_width=1, line_color='lightblue', line_alpha=1.0)
# Set up widgets
snow = Slider(title="Snow", value=0.1, start=0., end=1.0, step=0.1)
conifers = Slider(title="Conifers", value=0.2, start=0., end=1.0, step=0.1)
algae = Slider(title="Red Algae", value=0.1, start=0., end=1.0, step=0.1)
ocean = Slider(title="Ocean", value=0.6, start=0., end=1.0, step=0.1)
def update_data(attrname, old, new):
print 'SNOW : ', snow.value
print 'CONIFERS : ', conifers.value
print 'OCEAN : ', ocean.value
ocean_scale = 1.0 - snow.value - conifers.value - algae.value
ocean.value = 1.0 - snow.value - conifers.value - algae.value
full_spectrum.data['f'] = snow.value * el['SNOW'][0] + conifers.value * el['CONIFERS'][0] + algae.value * el['ALGAE'][0] + ocean_scale* el['OCEAN'][0]
full_spectrum.data['snow'] = snow.value * el['SNOW'][0]
full_spectrum.data['conifers'] = conifers.value * el['CONIFERS'][0]
full_spectrum.data['algae'] = algae.value * el['ALGAE'][0]
full_spectrum.data['ocean'] = ocean_scale* el['OCEAN'][0]
def update_on_callback():
print 'SNOW : ', snow.value
print 'CONIFERS : ', conifers.value
print 'OCEAN : ', ocean.value
ocean_scale = 1.0 - snow.value - conifers.value - algae.value
ocean.value = 1.0 - snow.value - conifers.value - algae.value
full_spectrum.data['f'] = snow.value * el['SNOW'][0] + conifers.value * el['CONIFERS'][0] + algae.value * el['ALGAE'][0] + ocean_scale* el['OCEAN'][0]
full_spectrum.data['snow'] = snow.value * el['SNOW'][0]
full_spectrum.data['conifers'] = conifers.value * el['CONIFERS'][0]
full_spectrum.data['algae'] = algae.value * el['ALGAE'][0]
full_spectrum.data['ocean'] = ocean_scale* el['OCEAN'][0]
# iterate on changes to parameters
#for w in [snow, conifers, algae, ocean]:
# w.on_change('value', update_data)
# Set up layouts and add to document
inputs = Column(children=[snow, conifers, algae, ocean])
v = Row(children=[inputs, atm_plot])
curdoc().add_root(v)
curdoc().add_periodic_callback(update_on_callback,2000)