-
Notifications
You must be signed in to change notification settings - Fork 0
/
blinkingTracker.py
128 lines (107 loc) · 3.92 KB
/
blinkingTracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
'''
Object detection ("Ball tracking") with OpenCV
Adapted from the original code developed by Adrian Rosebrock
Visit original post: https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
Developed by Marcelo Rovai - MJRoBot.org @ 7Feb2018
'''
# import the necessary packages
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "yellow object"
# (or "ball") in the HSV color space, then initialize the
# list of tracked points
# colorLower = (49, 100, 100)
# colorUpper = (99, 255, 255)
colorLower = (0, 0, 240)
colorUpper = (255, 50, 255)
pts = deque(maxlen=args["buffer"])
gbuffer = deque(maxlen=25)
# if a video path was not supplied, grab the reference
# to the webcam
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# otherwise, grab a reference to the video file
else:
camera = cv2.VideoCapture(args["video"])
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
if args.get("video") and not grabbed:
break
# resize the frame, inverted ("vertical flip" w/ 180degrees),
# blur it, and convert it to the HSV color space
frame = imutils.resize(frame, width=600)
# frame = imutils.rotate(frame, angle=180)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, colorLower, colorUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
# if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
# cv2.circle(frame, (int(x), int(y)), int(radius),
# (0, 255, 255), 2)
# cv2.circle(frame, center, 5, (0, 0, 255), -1)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
gbuffer.append(0)
continue
gbuffer.append(1)
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
if len(gbuffer) >= 6:
print(gbuffer)
if gbuffer[-6] == 1 and gbuffer [-5] == 0 and gbuffer [-4] == 0 and gbuffer[-3] == 1 and gbuffer [-2] == 0 and gbuffer [-1] == 0:
print("ALELUYA")
if gbuffer[-6] == 1 and gbuffer [-5] == 1 and gbuffer [-4] == 0 and gbuffer[-3] == 1 and gbuffer [-2] == 1 and gbuffer [-1] == 0:
print("GERONIMO")
if len(gbuffer) >= 20:
gbuffer.popleft()
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()