-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
executable file
·76 lines (75 loc) · 2.24 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
defaults:
- _self_
- [email protected]: h3342
- [email protected]: default
name: experiment
wandb_id:
is_train: true
phase: train
initial_epoch: 0 # where to start counting epochs
load_checkpoint: # (epoch | latest | null) if specified, will load checkpoint (if epoch, will use initial_epoch's checkpoint) and continue training from there
data_folder: ${oc.env:DATA_FOLDER,/Users/georg/Desktop/Scratch.nosync}
checkpoints_dir: ${data_folder}/checkpoints
dataset:
data_root: ${data_folder}/patches
input:
props: # key-value pairs to identify images
transforms: []
num_channels: 1
outputs:
B:
props: # key-value pairs to identify images
transforms: []
num_channels: 1
# C:
# props: # key-value pairs to identify images
# transforms: []
# num_channels: 1
batch_size: 64
shuffle: true
num_threads: 8 # number of threads for loading data
max_size: .inf # maximum size of the dataset per epoch
norm: batch
initialization: normal
initialization_scale: .02 # scaling factor
gpus: [4, 5, 6, 7]
learning_rate:
initial: 0.0002
policy: linear # learning rate policy: linear | step | plateau | cosine
n_epochs_initial: 20 # number of epochs with the initial learning rate
n_epochs_decay: 10 # number of epochs to linearly decay learning rate to zero
decay_iters: 50 # multiply by a gamma every decay_iters iterations
beta1: .5
gan: pix2pix
discriminator:
filters: 64
layers: 3
type: separate # separate | joint
generator:
filters: 64
dropout: true
dropout_eval_mode: "dropout" # how to apply dropout at test time: identity | average | dropout
outputs: [fake_B]
encoders:
- from: real_A
to: latent_A
decoders:
- from: latent_A
to: fake_B
composites: []
loss:
generator:
ground_truth:
l1: 100.0
l2: 0.0
kl: 0.0
coefficient: 1. # TODO: try .5
discriminator:
coefficient: 1. # TODO: try .5
verbose: true
log_freq: 100 # log metrics every n iterations
visualize_freq: 5000 # log visualizations every n iterations, must be a multiple of log_freq
save_epoch_freq: 1
save_latest_freq: 5000
save_by_iter: false # if false, save only the latest model
num_epochs: ${sum:${learning_rate.n_epochs_initial},${learning_rate.n_epochs_decay}}