Implementation for the paper "MenuNER: Domain-Adapted BERT Based NER Approach for a Domain with Limited Dataset and Its Application to Food Menu Domain"
The best results achieved by the model:
precision recall f1-score support
MENU 0.9386 0.9301 0.9344 1431
micro avg 0.9386 0.9301 0.9344 1431
macro avg 0.9386 0.9301 0.9344 1431
ner/preprocess.py
--data_dir=../data/menu
--bert_model_name_or_path=../model/FoodieBERT/cased_L-12_H-768_A-12
--bert_use_sub_label
ner/train.py
--data_dir=../data/menu
--bert_model_name_or_path=../model/FoodieBERT/cased_L-12_H-768_A-12
--batch_size=32
--eval_batch_size=64
--save_path=pytorch-domain-model-bert-en.pt
--bert_output_dir=bert-domain-checkpoint-en
--epoch=30
--bert_use_pos
--use_char_cnn
--use_mha
--bert_use_feature_based
--use_crf
ner/evaluation.py
--config=../configs/config-bert.json
--data_dir=../data/menu
--model_path=pytorch-domain-model-bert-en.pt
--bert_output_dir=bert-domain-checkpoint-en
--bert_use_pos
--use_char_cnn
--use_mha
--bert_use_feature_based
--use_crf
@Article{app11136007,
AUTHOR = {Syed, Muzamil Hussain and Chung, Sun-Tae},
TITLE = {MenuNER: Domain-Adapted BERT Based NER Approach for a Domain with Limited Dataset and Its Application to Food Menu Domain},
JOURNAL = {Applied Sciences},
VOLUME = {11},
YEAR = {2021},
NUMBER = {13},
ARTICLE-NUMBER = {6007},
URL = {https://www.mdpi.com/2076-3417/11/13/6007},
ISSN = {2076-3417},
DOI = {10.3390/app11136007}
}