forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForeachBinaryOpScalar.cu
283 lines (254 loc) · 9.26 KB
/
ForeachBinaryOpScalar.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/ForeachUtils.h>
#include <ATen/native/cuda/ForeachFunctors.cuh>
#include <ATen/native/cuda/ForeachMinMaxFunctors.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_foreach_add_native.h>
#include <ATen/ops/_foreach_clamp_max_native.h>
#include <ATen/ops/_foreach_clamp_min_native.h>
#include <ATen/ops/_foreach_div_native.h>
#include <ATen/ops/_foreach_mul_native.h>
#include <ATen/ops/_foreach_pow_native.h>
#include <ATen/ops/_foreach_sub_native.h>
#include <ATen/ops/empty_like_native.h>
#endif
namespace at::native {
template <typename T, template <class> class Op>
std::vector<Tensor> foreach_binary_op(
TensorList tensors,
const Scalar& scalar) {
std::vector<std::vector<at::Tensor>> tensor_lists;
std::vector<at::Tensor> vec_res;
vec_res.reserve(tensors.size());
for (const auto& t : tensors) {
vec_res.emplace_back(at::native::empty_like(t));
}
tensor_lists.emplace_back(tensors.vec());
tensor_lists.emplace_back(std::move(vec_res));
using opmath_t = at::opmath_type<T>;
multi_tensor_apply<2>(
tensor_lists,
BinaryOpScalarFunctor<
T,
/* depth */ 2,
/* r_args_depth */ 1,
/* res_arg_index */ 1>(),
Op<opmath_t>(),
scalar.to<opmath_t>());
return tensor_lists[1];
}
template <typename T, template <class> class Op>
void foreach_binary_op_(TensorList tensors, const Scalar& scalar) {
std::vector<std::vector<at::Tensor>> tensor_lists;
tensor_lists.emplace_back(tensors.vec());
using opmath_t = at::opmath_type<T>;
multi_tensor_apply<1>(
tensor_lists,
BinaryOpScalarFunctor<
T,
/* depth */ 1,
/* r_args_depth */ 1,
/* res_arg_index */ 0>(),
Op<opmath_t>(),
scalar.to<opmath_t>());
increment_version(tensors);
}
template <template <class> class Op>
std::vector<Tensor> all_types_complex_bool_half_bfloat16(
TensorList tensors,
const Scalar& scalar) {
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
kBool,
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda",
[&]() { return foreach_binary_op<scalar_t, Op>(tensors, scalar); });
}
template <template <class> class Op>
void all_types_complex_bool_half_bfloat16_(
TensorList tensors,
const Scalar& scalar) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
kBool,
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda_",
[&]() { foreach_binary_op_<scalar_t, Op>(tensors, scalar); });
}
template <template <class> class Op>
std::vector<Tensor> all_types_half_bfloat16(
TensorList tensors,
const Scalar& scalar) {
return AT_DISPATCH_ALL_TYPES_AND2(
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda",
[&]() { return foreach_binary_op<scalar_t, Op>(tensors, scalar); });
}
template <template <class> class Op>
void all_types_half_bfloat16_(TensorList tensors, const Scalar& scalar) {
AT_DISPATCH_ALL_TYPES_AND2(
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda_",
[&]() { foreach_binary_op_<scalar_t, Op>(tensors, scalar); });
}
template <template <class> class Op>
std::vector<Tensor> all_types_complex_half_bfloat16(
TensorList tensors,
const Scalar& scalar) {
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda",
[&]() { return foreach_binary_op<scalar_t, Op>(tensors, scalar); });
}
template <template <class> class Op>
void all_types_complex_half_bfloat16_(
TensorList tensors,
const Scalar& scalar) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda_",
[&]() { foreach_binary_op_<scalar_t, Op>(tensors, scalar); });
}
#define FOREACH_BINARY_OP_SCALAR(FUNCTION, NAME, OP, DIVISION_OP) \
void foreach_tensor_##NAME##_scalar_kernel_cuda_( \
TensorList tensors, const Scalar& scalar) { \
check_foreach_api_restrictions(tensors); \
if (!can_use_fast_route(tensors, scalar, DIVISION_OP)) { \
return at::native::foreach_tensor_##NAME##_scalar_kernel_slow_( \
tensors, scalar); \
} \
\
FUNCTION##_<OP>(tensors, scalar); \
} \
\
std::vector<Tensor> foreach_tensor_##NAME##_scalar_kernel_cuda( \
TensorList tensors, const Scalar& scalar) { \
check_foreach_api_restrictions(tensors); \
if (!can_use_fast_route(tensors, scalar, DIVISION_OP)) { \
return at::native::foreach_tensor_##NAME##_scalar_kernel_slow( \
tensors, scalar); \
} \
\
return FUNCTION<OP>(tensors, scalar); \
}
FOREACH_BINARY_OP_SCALAR(
all_types_complex_bool_half_bfloat16,
add,
std::plus,
/*div_op*/ false);
FOREACH_BINARY_OP_SCALAR(
all_types_complex_bool_half_bfloat16,
mul,
std::multiplies,
/*div_op*/ false);
// See [Why is foreach_pow's division_op=true?]
FOREACH_BINARY_OP_SCALAR(
all_types_complex_half_bfloat16,
pow,
power_functor,
/*div_op*/ true);
std::vector<Tensor> foreach_scalar_pow_list_kernel_cuda(
const Scalar& scalar,
TensorList exponent) {
check_foreach_api_restrictions(exponent);
if (!can_use_fast_route(exponent)) {
return at::native::foreach_scalar_pow_list_kernel_slow(scalar, exponent);
}
return all_types_complex_half_bfloat16<reverse_power_functor>(
exponent, scalar);
}
// In the case of division, integer inputs will result in float.
// Currently multi tensor apply can only return result of the same type as
// input.
//
// Implement via multiply with reciprocal as it's faster and makes it match
// the behavior of regular Tensor div by scalar. Loses one bit of
// precision.
Scalar scalar_reciprocal(const Scalar& scalar) {
if (scalar.isFloatingPoint()) {
return Scalar(1. / scalar.toDouble());
} else if (scalar.isIntegral(/*includeBool*/ true)) {
return Scalar(1. / static_cast<double>(scalar.toLong()));
} else if (scalar.isComplex()) {
return Scalar(1. / scalar.toComplexDouble());
}
TORCH_INTERNAL_ASSERT(
false, "divison with ", scalar.type(), " not supported");
}
void foreach_tensor_div_scalar_kernel_cuda_(
TensorList tensors,
const Scalar& scalar) {
check_foreach_api_restrictions(tensors);
if (!can_use_fast_route(tensors, scalar, true)) {
return at::native::foreach_tensor_mul_scalar_kernel_slow_(
tensors, scalar_reciprocal(scalar));
}
all_types_complex_bool_half_bfloat16_<std::multiplies>(
tensors, scalar_reciprocal(scalar));
}
std::vector<Tensor> foreach_tensor_div_scalar_kernel_cuda(
TensorList tensors,
const Scalar& scalar) {
check_foreach_api_restrictions(tensors);
if (!can_use_fast_route(tensors, scalar, true)) {
return at::native::foreach_tensor_mul_scalar_kernel_slow(
tensors, scalar_reciprocal(scalar));
}
return all_types_complex_bool_half_bfloat16<std::multiplies>(
tensors, scalar_reciprocal(scalar));
}
// In the case of subtraction, we dont allow scalar to be boolean following the
// torch.sub logic
void foreach_tensor_sub_scalar_kernel_cuda_(
TensorList tensors,
const Scalar& scalar) {
check_foreach_api_restrictions(tensors);
at::native::sub_check(tensors[0], scalar);
if (!can_use_fast_route(tensors, scalar)) {
return at::native::foreach_tensor_sub_scalar_kernel_slow_(tensors, scalar);
}
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
kBool,
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda_",
[&]() { foreach_binary_op_<scalar_t, std::minus>(tensors, scalar); });
}
std::vector<Tensor> foreach_tensor_sub_scalar_kernel_cuda(
TensorList tensors,
const Scalar& scalar) {
check_foreach_api_restrictions(tensors);
at::native::sub_check(tensors[0], scalar);
if (!can_use_fast_route(tensors, scalar)) {
return at::native::foreach_tensor_sub_scalar_kernel_slow(tensors, scalar);
}
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
kBool,
kHalf,
kBFloat16,
tensors[0].scalar_type(),
"foreach_binary_op_scalar_cuda",
[&]() {
return foreach_binary_op<scalar_t, std::minus>(tensors, scalar);
});
}
// NOTE(crcrpar): `all_types_half_bfloat16` does not cover bool, so temporarily
// set `division_op` to true.
FOREACH_BINARY_OP_SCALAR(all_types_half_bfloat16, clamp_max, minimum, true);
FOREACH_BINARY_OP_SCALAR(all_types_half_bfloat16, clamp_min, maximum, true);
} // namespace at::native