-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
78 lines (70 loc) · 2.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 2 12:41:20 2023
@author: glend
"""
import config
import requests as req
from requests.auth import HTTPBasicAuth
import time
import pandas as pd
lt = time.localtime()
cur_sec = lt[5]
cur_min = lt[4]
cur_hr = lt[3]
cur_day = lt[2]
cur_mon = lt[1]
cur_yr = lt[0]
cur_date = str(cur_yr) + "-" + str(cur_mon) + "-" + str(cur_day)
cur_time = str(cur_hr) + "-" + str(cur_min) + "-" + str(cur_sec)
feeds_dict = {"ai-jobs.net": "2594160",
"CareerCastIT&Engineering": "2594162",
"OpenDataScienceJobPortal": "2594166",
"JobsforR-Users": "1378327",
"MLconfJobBoard": "2594174",
"PythonJobBoard": "977141"}
feeds = ["2594160",
"2594162",
"2594166",
"1378327",
"2594174",
"977141"]
responses = []
#Feedbin API Call
def call_feedbin_api():
start = "https://api.feedbin.com/v2/feeds/"
end = "/entries.json"
for i in range(len(feeds)):
feed = feeds[i]
url = start + feed + end
response = req.get(url, auth = HTTPBasicAuth(config.feedbin_user, config.feedbin_pw)).json()
df = pd.DataFrame(data=response)
responses.append(df)
big_df = pd.concat(responses)
csv_str = cur_date + "_feeds_" + cur_time + ".csv"
big_df.to_csv(csv_str)
def call_linkedin_api():
url = "https://linkedin-jobs-search.p.rapidapi.com/"
page = 1
searching = True
while searching:
headers = {"content-type": "application/json",
"X-RapidAPI-Key": "721e8b75bamsh5449b1adc40e4afp1f81c9jsn19f891a4d6ad",
"X-RapidAPI-Host": "linkedin-jobs-search.p.rapidapi.com"}
payload = {"search_terms": "data scientist",
"location": "United States",
"page": str(page)}
response = req.request("POST", url, json=payload, headers=headers)
response_json = response.json()
try:
df = pd.DataFrame(data=response_json)
csv_str = cur_date + "_linkedin_pg_" + str(page) + "_" + cur_time + ".csv"
df.to_csv(csv_str)
page += 1
except:
print("broke, pg " + str(page))
page = 1
searching = False
break
call_feedbin_api()
call_linkedin_api()