-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSDFD.py
105 lines (87 loc) · 4.88 KB
/
SDFD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
import random
import csv
import time
# for selecting one random choice excluding a specified (used in combined races like [White:Black])
def choice_excluding(lst, exception):
possible_choices = [v for v in lst if v != exception]
return random.choice(possible_choices)
t = torch.rand(1000, 1000)
g = t.to("cuda")
# Define the output dierectory
output_dir = 'select_output_dir'
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, use_safetensors=True)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to("cuda")
images = []
#region prompt_options
gender = ['man, ', 'woman, ', 'boy, ', 'girl, ', 'baby boy, ', 'baby girl, ', 'androgynous person, ', 'gender fluid person, ', 'person having an androgynous appeal, ', 'person having male and female characteristics, ']
race = ['White, ', 'East Asian, ', 'Black, ', 'Pacific Islander, ', 'Indian, ', 'Southeast Asian, ', 'Middle Eastern, ', 'Latino, ']
moods = ['happy, ', 'sad, ', 'angry, ', 'tired, ', 'smiled, ', 'scared, ', 'excited, ', 'depressed, ', 'stressed, ']
hats = ['wearing cap, ', 'wearing hat, ', 'wearing pamela hat, ', 'wearing helmet, ', 'wearing headscarf, ', ' , ']
vision = ['wearing glasses, ', 'wearing sunglasses, ', 'wearing contact lenses, ', 'wearing colour contact lenses, ', ' , ']
vision2 = ['green eyes, ', 'blue eyes, ', 'brown eyes, ', 'black eyes, ']
acc = ['having wrinkles, ', ' , ']
hairColor = ['bald, ', 'black hair, ', 'blonde hair, ', 'brown hair, ', 'red hair, ', 'blue hair, ', 'green hair, ', 'pink hair, ', 'purple hair, ', 'white hair, ']
hairStyle = [ 'straight hair, ', 'curly hair, ', 'braid, ', 'ponytail, ', 'dreadlocks, ', 'hair clips, ', 'headband, ', 'short hair, ']
facePaints = ['wearing lipstick, ', 'wearing face blush, ', 'wearing rimmel, ', 'heavy make-up, ']
facial0 = ['wearing earrings, ']
facial1 = ['having piercing, ']
facial2 = ['having face tattoo, ']
facial3 = ['wearing medical mask, ']
facialAll = ['wearing earrings, ', 'having piercing, ', 'having face tattoo, ', 'wearing medical mask, ']
rel_muslimF = ['wearing hijab, ', 'wearing al-amira, ', 'wearing khimar, ', 'wearing chador, ', 'wearing niqab, ', 'wearing burqa, ']
rel_jewishF = ['wearing tichel, ', 'wearing snood, ']
rel_jewishM = ['wearing kippah, ']
rel_hinduF = ['hindu ghoonghat, ']
rel_hinduM = ['hindu turban, ']
rel_crhristianF = ['nun hat, ', 'veil, ']
analysis = [' Ultra HD, ', ' 4K ', ' 8K ']
camera = [' Nikon Z9, ', 'Fujifilm XT3, ', 'Canon Eos 5D, ']
poses = ['front face, ', 'side profile, ', ' ,']
faceHair = ['mustache, ', 'beard, ', ', ']
#endregion
for i in range(10): # number of different prompts attempted
g = random.choice(gender)
r = random.choice(race)
r2 = choice_excluding(race, r)
races = '['+ r + ' ' + g + ' : ' + r2 + ' ' + g + '], '
if g in {'man, ', 'woman, ', 'boy, ', 'girl, ', 'androgynous person, '}:
gl = g[:2]
elif g in {'baby boy, ', 'baby girl, '}:
gl = g[0]+g[5]
elif g == 'gender fluid person, ' :
gl = 'gf'
elif g == 'person having an androgynous appeal, ':
gl = 'pa'
else:
gl = 'pc'
rl = r[0]+r2[0]
facial = [facial0, facial1, facial2, facial3, ' , ']
facial_choice = random.choice(random.choices(facial, weights=map(len, facial))[0])
if g == 'woman, ':
rel = [rel_muslimF, rel_jewishF, rel_hinduF, rel_crhristianF, ' , ']
rel_choice = random.choice(random.choices(rel, weights=map(len, rel))[0])
elif g == 'man, ':
rel = [rel_jewishM, rel_hinduM, ' , ']
rel_choice = random.choice(random.choices(rel, weights=map(len, rel))[0])
else:
rel = [rel_muslimF, rel_jewishF, rel_hinduF, rel_crhristianF, rel_jewishM, rel_hinduM, ' , ']
rel_choice = random.choice(random.choices(rel, weights=map(len, rel))[0])
# Change the prompt accordingly to what we want to depict
prompt = ( races + random.choice(hats) + random.choice(hairStyle)
+ random.choice(analysis)
+ 'ultra realistic, textured skin, remarkable detailed pupils, realistic dull skin noise, visible skin detail, skin fuzz, dry skin, tone mapping, realistic background' )
# number of images created with the same prompt
num_images = 3
start = time.time()
images = pipeline(prompt = prompt, negative_prompt = 'bad anatomy, worst quality, unreal engine, animated, extra fingers, low resolution', num_images_per_prompt=num_images).images
end = time.time()
t = round(end-start, 2)
for i, image in enumerate(images):
image.save(f'{output_dir}/{gl+rl}-{str(i)}.jpg')
with open('prompts.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([f"{gl+rl}-{str(i)}", prompt, t])
torch.cuda.empty_cache()