diff --git a/examples/basics.jl b/examples/basics.jl index 3594bdab..fbb48bcd 100644 --- a/examples/basics.jl +++ b/examples/basics.jl @@ -189,7 +189,7 @@ This is important to keep in mind when testing new models. In many applications, we have access to various observation sequences of different lengths. =# -nb_seqs = 300 +nb_seqs = 1000 long_obs_seqs = [last(rand(rng, hmm, rand(rng, 100:200))) for k in 1:nb_seqs]; typeof(long_obs_seqs) @@ -258,6 +258,5 @@ hcat(initialization(hmm_est_concat), initialization(hmm)) # ## Tests #src control_seq = fill(nothing, last(seq_ends)); #src -test_identical_hmmbase(rng, hmm, 100; hmm_guess) #src test_coherent_algorithms(rng, hmm, control_seq; seq_ends, hmm_guess) #src test_type_stability(rng, hmm, control_seq; seq_ends, hmm_guess) #src diff --git a/examples/types.jl b/examples/types.jl index 0945be63..628155c7 100644 --- a/examples/types.jl +++ b/examples/types.jl @@ -156,9 +156,8 @@ Another useful array type is [StaticArrays.jl](https://github.com/JuliaArrays/St @test nnz(log_transition_matrix(hmm)) == nnz(transition_matrix(hmm)) #src -seq_ends = cumsum(rand(rng, 100:200, 100)); #src +seq_ends = cumsum(rand(rng, 100:200, 1000)); #src control_seq = fill(nothing, last(seq_ends)); #src -test_identical_hmmbase(rng, hmm, 100; hmm_guess) #src test_coherent_algorithms(rng, hmm, control_seq; seq_ends, hmm_guess, init=false, atol=0.08) #src test_type_stability(rng, hmm, control_seq; seq_ends, hmm_guess) #src # https://github.com/JuliaSparse/SparseArrays.jl/issues/469 #src diff --git a/libs/HMMTest/ext/HMMTestHMMBaseExt.jl b/libs/HMMTest/ext/HMMTestHMMBaseExt.jl index f3c1c379..b13e7f64 100644 --- a/libs/HMMTest/ext/HMMTestHMMBaseExt.jl +++ b/libs/HMMTest/ext/HMMTestHMMBaseExt.jl @@ -3,7 +3,7 @@ module HMMTestHMMBaseExt using HiddenMarkovModels import HiddenMarkovModels as HMMs using HMMBase: HMMBase -using HMMTest: HMMTest +using HMMTest using Random: AbstractRNG using Statistics: mean using Test: @test, @testset, @test_broken