-
Notifications
You must be signed in to change notification settings - Fork 115
/
DESCRIPTION
49 lines (49 loc) · 1.48 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Package: gbm3
Version: 3.0
Date: 2024-01-14
Title: Generalized Boosted Regression Models
Authors@R: c(
person("James", "Hickey",
email="[email protected]",
role="aut"),
person("Paul", "Metcalfe",
email="[email protected]",
role=c("aut")),
person("Greg", "Ridgeway",
email="[email protected]",
role=c("aut", "cre")),
person("Stefan", "Schroedl",
email="[email protected]",
role="aut"),
person("Harry", "Southworth",
email="[email protected]",
role="aut"),
person("Terry", "Therneau",
email="[email protected]",
role="aut")
)
Depends:
R (>= 3.5.0)
Imports:
survival,
lattice,
splines,
Rcpp (>= 1.0.0)
Suggests:
testthat (>= 3.1.0),
knitr,
rmarkdown
VignetteBuilder: knitr
Description: Extensions to Freund and Schapire's AdaBoost algorithm, Y. Freund
and R. Schapire (1997) <doi:10.1006/jcss.1997.1504> and Friedman's gradient
boosting machine, J.H. Friedman (2001) <doi:10.1214/aos/1013203451>.
Includes regression methods for least squares, absolute loss,
t-distribution loss, quantile regression, logistic, Poisson,
Cox proportional hazards partial likelihood, AdaBoost
exponential loss, Huberized hinge loss,
and Learning to Rank measures (LambdaMART).
License: GPL (>= 2)
URL: https://github.com/gbm-developers/gbm3
Encoding: UTF-8
RoxygenNote: 7.2.3
LinkingTo: Rcpp